Full metadata
Title
Wide input common-mode range fully integrated low-dropout voltage regulators
Description
The modern era of consumer electronics is dominated by compact, portable, affordable smartphones and wearable computing devices. Power management integrated circuits (PMICs) play a crucial role in on-chip power management, extending battery life and efficiency of integrated analog, radio-frequency (RF), and mixed-signal cores. Low-dropout (LDO) regulators are commonly used to provide clean supply for low voltage integrated circuits, where point-of-load regulation is important. In System-On-Chip (SoC) applications, digital circuits can change their mode of operation regularly at a very high speed, imposing various load transient conditions for the regulator. These quick changes of load create a glitch in LDO output voltage, which hamper performance of the digital circuits unfavorably. For an LDO designer, minimizing output voltage variation and speeding up voltage glitch settling is an important task.
The presented research introduces two fully integrated LDO voltage regulators for SoC applications. N-type Metal-Oxide-Semiconductor (NMOS) power transistor based operation achieves high bandwidth owing to the source follower configuration of the regulation loop. A low input impedance and high output impedance error amplifier ensures wide regulation loop bandwidth and high gain. Current-reused dynamic biasing technique has been employed to increase slew-rate at the gate of power transistor during full-load variations, by a factor of two. Three design variations for a 1-1.8 V, 50 mA NMOS LDO voltage regulator have been implemented in a 180 nm Mixed-mode/RF process. The whole LDO core consumes 0.130 mA of nominal quiescent ground current at 50 mA load and occupies 0.21 mm x mm. LDO has a dropout voltage of 200 mV and is able to recover in 30 ns from a 65 mV of undershoot for 0-50 pF of on-chip load capacitance.
The presented research introduces two fully integrated LDO voltage regulators for SoC applications. N-type Metal-Oxide-Semiconductor (NMOS) power transistor based operation achieves high bandwidth owing to the source follower configuration of the regulation loop. A low input impedance and high output impedance error amplifier ensures wide regulation loop bandwidth and high gain. Current-reused dynamic biasing technique has been employed to increase slew-rate at the gate of power transistor during full-load variations, by a factor of two. Three design variations for a 1-1.8 V, 50 mA NMOS LDO voltage regulator have been implemented in a 180 nm Mixed-mode/RF process. The whole LDO core consumes 0.130 mA of nominal quiescent ground current at 50 mA load and occupies 0.21 mm x mm. LDO has a dropout voltage of 200 mV and is able to recover in 30 ns from a 65 mV of undershoot for 0-50 pF of on-chip load capacitance.
Date Created
2016
Contributors
- Desai, Chirag (Author)
- Kiaei, Sayfe (Thesis advisor)
- Bakkaloglu, Bertan (Committee member)
- Seo, Jae-Sun (Committee member)
- Arizona State University (Publisher)
Topical Subject
- Electrical Engineering
- engineering
- Analog design
- Battery chargers
- Fast Transient Response LDO
- LDO Voltage Regulators
- Power Management Integrated Circuits
- Power supply
- Voltage regulators
- Low voltage integrated circuits--Energy consumption.
- Low voltage integrated circuits
- Integrated circuits--Management.
- Integrated circuits
Resource Type
Extent
ix, 61 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.38373
Statement of Responsibility
by Chirag Desai
Description Source
Viewed on June 8, 2016
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2016
bibliography
Includes bibliographical references (pages 59-61)
Field of study: Electrical engineering
System Created
- 2016-06-01 08:03:12
System Modified
- 2021-08-30 01:24:58
- 3 years 2 months ago
Additional Formats