Full metadata
Title
Visual quality with a focus on 3D blur discrimination and texture granularity
Description
Blur is an important attribute in the study and modeling of the human visual system. In this work, 3D blur discrimination experiments are conducted to measure the just noticeable additional blur required to differentiate a target blur from the reference blur level. The past studies on blur discrimination have measured the sensitivity of the human visual system to blur using 2D test patterns. In this dissertation, subjective tests are performed to measure blur discrimination thresholds using stereoscopic 3D test patterns. The results of this study indicate that, in the symmetric stereo viewing case, binocular disparity does not affect the blur discrimination thresholds for the selected 3D test patterns. In the asymmetric viewing case, the blur discrimination thresholds decreased and the decrease in threshold values is found to be dominated by the eye observing the higher blur.
The second part of the dissertation focuses on texture granularity in the context of 2D images. A texture granularity database referred to as GranTEX, consisting of textures with varying granularity levels is constructed. A subjective study is conducted to measure the perceived granularity level of textures present in the GranTEX database. An objective index that automatically measures the perceived granularity level of textures is also presented. It is shown that the proposed granularity metric correlates well with the subjective granularity scores and outperforms the other methods presented in the literature.
A subjective study is conducted to assess the effect of compression on textures with varying degrees of granularity. A logarithmic function model is proposed as a fit to the subjective test data. It is demonstrated that the proposed model can be used for rate-distortion control by allowing the automatic selection of the needed compression ratio for a target visual quality. The proposed model can also be used for visual quality assessment by providing a measure of the visual quality for a target compression ratio.
The effect of texture granularity on the quality of synthesized textures is studied. A subjective study is presented to assess the quality of synthesized textures with varying levels of texture granularity using different types of texture synthesis methods. This work also proposes a reduced-reference visual quality index referred to as delta texture granularity index for assessing the visual quality of synthesized textures.
The second part of the dissertation focuses on texture granularity in the context of 2D images. A texture granularity database referred to as GranTEX, consisting of textures with varying granularity levels is constructed. A subjective study is conducted to measure the perceived granularity level of textures present in the GranTEX database. An objective index that automatically measures the perceived granularity level of textures is also presented. It is shown that the proposed granularity metric correlates well with the subjective granularity scores and outperforms the other methods presented in the literature.
A subjective study is conducted to assess the effect of compression on textures with varying degrees of granularity. A logarithmic function model is proposed as a fit to the subjective test data. It is demonstrated that the proposed model can be used for rate-distortion control by allowing the automatic selection of the needed compression ratio for a target visual quality. The proposed model can also be used for visual quality assessment by providing a measure of the visual quality for a target compression ratio.
The effect of texture granularity on the quality of synthesized textures is studied. A subjective study is presented to assess the quality of synthesized textures with varying levels of texture granularity using different types of texture synthesis methods. This work also proposes a reduced-reference visual quality index referred to as delta texture granularity index for assessing the visual quality of synthesized textures.
Date Created
2015
Contributors
- Subedar, Mahesh M (Author)
- Karam, Lina (Thesis advisor)
- Abousleman, Glen (Committee member)
- Li, Baoxin (Committee member)
- Reisslein, Martin (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xi, 101 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.36518
Statement of Responsibility
by Mahesh M. Subedar
Description Source
Viewed on March 17, 2016
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2015
bibliography
Includes bibliographical references (pages 94-101)
Field of study: Electrical engineering
System Created
- 2016-02-01 07:14:42
System Modified
- 2021-08-30 01:25:18
- 3 years 2 months ago
Additional Formats