Description
Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the severity of each degradation mode. In this thesis multiple modules from three climate zones (Arizona, California and Colorado) were investigated for a single module glass/polymer construction (Siemens M55) to determine the degree to which they had degraded, and the main factors that contributed to that degradation. To explain the loss in power, various nondestructive and destructive techniques were used to indicate possible causes of loss in performance. This is a two-part thesis. Part 1 presents non-destructive test results and analysis and Part 2 presents destructive test results and analysis.
Download count: 2
Details
Title
- Characterization and analysis of long term field aged photovoltaic modules and encapsulant materials
Contributors
- Chicca, Matthew (Author)
- Tamizhmani, Govindasamy (Thesis advisor)
- Rogers, Bradley (Committee member)
- Srinivasan, Devarajan (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2015
Subjects
Resource Type
Collections this item is in
Note
-
thesisPartial requirement for: M.S., Arizona State University, 2015
-
bibliographyIncludes bibliographical references (page 59)
-
Field of study: Engineering
Citation and reuse
Statement of Responsibility
by Matthew Chicca