Full metadata
Title
Identification of structural mechanisms that modulate glycosaminoglycan affinity in various strains of decorin binding protein A
Description
Glycosaminoglycans (GAGs) are a class of complex biomolecules comprised of linear, sulfated polysaccharides whose presence on cell surfaces and in the extracellular matrix involve them in many physiological phenomena as well as in interactions with pathogenic microbes. Decorin binding protein A (DBPA), a Borrelia surface lipoprotein involved in the infectivity of Lyme disease, is responsible for binding GAGs found on decorin, a small proteoglycan present in the extracellular matrix. Different DBPA strains have notable sequence heterogeneity that results in varying levels of GAG-binding affinity. In this dissertation, the structures and GAG-binding mechanisms for three strains of DBPA (B31 and N40 DBPAs from B. burgdorferi and PBr DBPA from B. garinii) are studied to determine why each strain has a different affinity for GAGs. These three strains have similar topologies consisting of five α-helices held together by a hydrophobic core as well as two long flexible segments: a linker between helices one and two and a C-terminal tail. This structural arrangement facilitates the formation of a basic pocket below the flexible linker which is the primary GAG-binding epitope. However, this GAG-binding site can be occluded by the flexible linker, which makes the linker a negative regulator of GAG-binding. ITC and NMR titrations provide KD values that show PBr DBPA binds GAGs with higher affinity than B31 and N40 DBPAs, while N40 binds with the lowest affinity of the three. Work in this thesis demonstrates that much of the discrepancies seen in GAG affinities of the three DBPAs can be explained by the amino acid composition and conformation of the linker. Mutagenesis studies show that B31 DBPA overcomes the pocket obstruction with the BXBB motif in its linker while PBr DBPA has a retracted linker that exposes the basic pocket as well as a secondary GAG-binding site. N40 DBPA, however, does not have any evolutionary modifications to its structure to enhance GAG binding which explains its lower affinity for GAGs. GMSA and ELISA assays, along with NMR PRE experiments, confirm that structural changes in the linker do affect GAG-binding and, as a result, the linker is responsible for regulating GAG affinity.
Date Created
2015
Contributors
- Morgan, Ashli M (Author)
- Wang, Xu (Thesis advisor)
- Allen, James (Committee member)
- Yarger, Jeffery (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xiii, 137 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.34887
Statement of Responsibility
by Ashli M. Morgan
Description Source
Retrieved on Nov. 19, 2015
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2015
bibliography
Includes bibliographical references (pages 120-127)
Field of study: Biochemistry
System Created
- 2015-08-17 11:55:39
System Modified
- 2021-08-30 01:27:14
- 3 years 2 months ago
Additional Formats