Description
This report investigates the improvement in the transmission throughput, when fountain codes are used in opportunistic data routing, for a proposed delay tolerant network to connect remote and isolated communities in the Amazon region in Brazil, to the main city of that area. To extend healthcare facilities to the remote and isolated communities, on the banks of river Amazon in Brazil, the network [7] utilizes regularly schedules boats as data mules to carry data from one city to other.
Frequent thunder and rain storms, given state of infrastructure and harsh geographical terrain; all contribute to increase in chances of massages not getting delivered to intended destination. These regions have access to medical facilities only through sporadic visits from medical team from the main city in the region, Belem. The proposed network uses records for routine clinical examinations such as ultrasounds on pregnant women could be sent to the doctors in Belem for evaluation.
However, due to the lack of modern communication infrastructure in these communities and unpredictable boat schedules due to delays and breakdowns, as well as high transmission failures due to the harsh environment in the region, mandate the design of robust delay-tolerant routing algorithms. The work presented here incorporates the unpredictability of the Amazon riverine scenario into the simulation model - accounting for boat mechanical failure in boats leading to delays/breakdowns, possible decrease in transmission speed due to rain and individual packet losses.
Extensive simulation results are presented, to evaluate the proposed approach and to verify that the proposed solution [7] could be used as a viable mode of communication, given the lack of available options in the region. While the simulation results are focused on remote healthcare applications in the Brazilian Amazon, we envision that our approach may also be used for other remote applications, such as distance education, and other similar scenarios.
Frequent thunder and rain storms, given state of infrastructure and harsh geographical terrain; all contribute to increase in chances of massages not getting delivered to intended destination. These regions have access to medical facilities only through sporadic visits from medical team from the main city in the region, Belem. The proposed network uses records for routine clinical examinations such as ultrasounds on pregnant women could be sent to the doctors in Belem for evaluation.
However, due to the lack of modern communication infrastructure in these communities and unpredictable boat schedules due to delays and breakdowns, as well as high transmission failures due to the harsh environment in the region, mandate the design of robust delay-tolerant routing algorithms. The work presented here incorporates the unpredictability of the Amazon riverine scenario into the simulation model - accounting for boat mechanical failure in boats leading to delays/breakdowns, possible decrease in transmission speed due to rain and individual packet losses.
Extensive simulation results are presented, to evaluate the proposed approach and to verify that the proposed solution [7] could be used as a viable mode of communication, given the lack of available options in the region. While the simulation results are focused on remote healthcare applications in the Brazilian Amazon, we envision that our approach may also be used for other remote applications, such as distance education, and other similar scenarios.
Details
Title
- Stochastic simulation framework for a data mule network in the Amazon delta
Contributors
- Agarwal, Rachit (Author)
- Richa, Andrea (Thesis advisor)
- Dasgupta, Partha (Committee member)
- Johnson, Thienne (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2015
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: M.S., Arizona State University, 2015
- bibliographyIncludes bibliographical references (pages 36-38)
- Field of study: Computer science
Citation and reuse
Statement of Responsibility
by Rachit Agarwal