Full metadata
Title
A GPU accelerated discontinuous Galerkin conservative level set method for simulating atomization
Description
This dissertation describes a process for interface capturing via an arbitrary-order, nearly quadrature free, discontinuous Galerkin (DG) scheme for the conservative level set method (Olsson et al., 2005, 2008). The DG numerical method is utilized to solve both advection and reinitialization, and executed on a refined level set grid (Herrmann, 2008) for effective use of processing power. Computation is executed in parallel utilizing both CPU and GPU architectures to make the method feasible at high order. Finally, a sparse data structure is implemented to take full advantage of parallelism on the GPU, where performance relies on well-managed memory operations.
With solution variables projected into a kth order polynomial basis, a k+1 order convergence rate is found for both advection and reinitialization tests using the method of manufactured solutions. Other standard test cases, such as Zalesak's disk and deformation of columns and spheres in periodic vortices are also performed, showing several orders of magnitude improvement over traditional WENO level set methods. These tests also show the impact of reinitialization, which often increases shape and volume errors as a result of level set scalar trapping by normal vectors calculated from the local level set field.
Accelerating advection via GPU hardware is found to provide a 30x speedup factor comparing a 2.0GHz Intel Xeon E5-2620 CPU in serial vs. a Nvidia Tesla K20 GPU, with speedup factors increasing with polynomial degree until shared memory is filled. A similar algorithm is implemented for reinitialization, which relies on heavier use of shared and global memory and as a result fills them more quickly and produces smaller speedups of 18x.
With solution variables projected into a kth order polynomial basis, a k+1 order convergence rate is found for both advection and reinitialization tests using the method of manufactured solutions. Other standard test cases, such as Zalesak's disk and deformation of columns and spheres in periodic vortices are also performed, showing several orders of magnitude improvement over traditional WENO level set methods. These tests also show the impact of reinitialization, which often increases shape and volume errors as a result of level set scalar trapping by normal vectors calculated from the local level set field.
Accelerating advection via GPU hardware is found to provide a 30x speedup factor comparing a 2.0GHz Intel Xeon E5-2620 CPU in serial vs. a Nvidia Tesla K20 GPU, with speedup factors increasing with polynomial degree until shared memory is filled. A similar algorithm is implemented for reinitialization, which relies on heavier use of shared and global memory and as a result fills them more quickly and produces smaller speedups of 18x.
Date Created
2015
Contributors
- Jibben, Zechariah J (Author)
- Herrmann, Marcus (Thesis advisor)
- Squires, Kyle (Committee member)
- Adrian, Ronald (Committee member)
- Chen, Kangping (Committee member)
- Treacy, Michael (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
viii, 85 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.34806
Statement of Responsibility
by Zechariah J. Jibben
Description Source
Viewed on September 3, 2015
Level of coding
full
Note
thesis
Partial requirement for: Ph. D., Arizona State University, 2015
bibliography
Includes bibliographical references (pages 73-75)
Field of study: Aerospace engineering
System Created
- 2015-08-17 11:51:39
System Modified
- 2021-08-30 01:27:44
- 3 years 2 months ago
Additional Formats