Description
Interest in Micro Aerial Vehicle (MAV) research has surged over the past decade. MAVs offer new capabilities for intelligence gathering, reconnaissance, site mapping, communications, search and rescue, etc. This thesis discusses key modeling and control aspects of flapping wing MAVs in hover. A three degree of freedom nonlinear model is used to describe the flapping wing vehicle. Averaging theory is used to obtain a nonlinear average model. The equilibrium of this model is then analyzed. A linear model is then obtained to describe the vehicle near hover. LQR is used to as the main control system design methodology. It is used, together with a nonlinear parameter optimization algorithm, to design a family multivariable control system for the MAV. Critical performance trade-offs are illuminated. Properties at both the plant output and input are examined. Very specific rules of thumb are given for control system design. The conservatism of the rules are also discussed. Issues addressed include
What should the control system bandwidth be vis--vis the flapping frequency (so that averaging the nonlinear system is valid)?
When is first order averaging sufficient? When is higher order averaging necessary?
When can wing mass be neglected and when does wing mass become critical to model?
This includes how and when the rules given can be tightened; i.e. made less conservative.
What should the control system bandwidth be vis--vis the flapping frequency (so that averaging the nonlinear system is valid)?
When is first order averaging sufficient? When is higher order averaging necessary?
When can wing mass be neglected and when does wing mass become critical to model?
This includes how and when the rules given can be tightened; i.e. made less conservative.
Download count: 1
Details
Title
- Modeling and control of flapping wing micro aerial vehicles
Contributors
- Biswal, Shiba (Author)
- Rodriguez, Armando (Thesis advisor)
- Mignolet, Marc (Thesis advisor)
- Berman, Spring (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2015
Resource Type
Collections this item is in
Note
-
thesisPartial requirement for: M.S., Arizona State University, 2015
-
bibliographyIncludes bibliogrphical references (pages 90-93)
-
Field of study: Mechanical engineering
Citation and reuse
Statement of Responsibility
by Shiba Biswal