Full metadata
Title
Multivariable control of fixed wing aircrafts
Description
This thesis addresses control design for fixed-wing air-breathing aircraft. Four aircraft with distinct dynamical properties are considered: a scram-jet powered hypersonic (100foot long, X-43 like, wedge shaped) aircraft with flexible modes operating near Mach 8, 85k ft, a NASA HiMAT (Highly Maneuverable Aircraft Technology) F-18 aircraft,
a McDonnell Douglas AV-8A Harrier aircraft, and a Vought F-8 Crusader aircraft. A two-input two-output (TITO) longitudinal LTI (linear time invariant) dynamical model is used for each aircraft. Control design trade studies are conducted for each of the aircraft. Emphasis is placed on the hypersonic vehicle because of its complex nonlinear (unstable, non-minimum phase, flexible) dynamics and uncertainty associated with hypersonic flight (Mach $>$ 5, shocks and high temperatures on leading edges). Two plume models are used for the hypersonic vehicle – an old plume model and a new plume model. The old plume model is simple and assumes a typical decaying pressure distribution for aft nozzle. The new plume model uses Newtonian impact theory and a nonlinear solver to compute the aft nozzle pressure distribution. Multivariable controllers were generated using standard weighted $H_{\inf}$ mixed-sensitivity optimization as well as a new input disturbance weighted mixed-sensitivity framework that attempts to achieve good multivariable properties at both the controls (plant inputs) as well as the errors (plant outputs). Classical inner-outer (PD-PI) structures (partially centralized and decentralized) were also used. It is shown that while these classical (sometimes partially centralized PD-PI) structures could be used to generate comparable results to the multivariable controllers (e.g. for the hypersonic vehicle, Harrier, F-8), considerable tuning (iterative optimization) is often essential. This is especially true for the highly coupled hypersonic vehicle – thus justifying the need for a good multivariable control design tool. Fundamental control design tradeoffs for each aircraft are presented – comprehensively for the hypersonic aircraft. In short, the thesis attempts to shed light on when complex controllers are essential and when simple structures are sufficient for achieving control designs with good multivariable loop properties at both the errors (plant outputs) and the controls (plant inputs).
a McDonnell Douglas AV-8A Harrier aircraft, and a Vought F-8 Crusader aircraft. A two-input two-output (TITO) longitudinal LTI (linear time invariant) dynamical model is used for each aircraft. Control design trade studies are conducted for each of the aircraft. Emphasis is placed on the hypersonic vehicle because of its complex nonlinear (unstable, non-minimum phase, flexible) dynamics and uncertainty associated with hypersonic flight (Mach $>$ 5, shocks and high temperatures on leading edges). Two plume models are used for the hypersonic vehicle – an old plume model and a new plume model. The old plume model is simple and assumes a typical decaying pressure distribution for aft nozzle. The new plume model uses Newtonian impact theory and a nonlinear solver to compute the aft nozzle pressure distribution. Multivariable controllers were generated using standard weighted $H_{\inf}$ mixed-sensitivity optimization as well as a new input disturbance weighted mixed-sensitivity framework that attempts to achieve good multivariable properties at both the controls (plant inputs) as well as the errors (plant outputs). Classical inner-outer (PD-PI) structures (partially centralized and decentralized) were also used. It is shown that while these classical (sometimes partially centralized PD-PI) structures could be used to generate comparable results to the multivariable controllers (e.g. for the hypersonic vehicle, Harrier, F-8), considerable tuning (iterative optimization) is often essential. This is especially true for the highly coupled hypersonic vehicle – thus justifying the need for a good multivariable control design tool. Fundamental control design tradeoffs for each aircraft are presented – comprehensively for the hypersonic aircraft. In short, the thesis attempts to shed light on when complex controllers are essential and when simple structures are sufficient for achieving control designs with good multivariable loop properties at both the errors (plant outputs) and the controls (plant inputs).
Date Created
2015
Contributors
- Mondal, Kaustav (Author)
- Rodriguez, Armando Antonio (Thesis advisor)
- Tsakalis, Kostas (Committee member)
- Si, Jennie (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xxi, 265 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.29994
Statement of Responsibility
by Kaustav Mondal
Description Source
Viewed on August 3, 2015
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2015
bibliography
Includes bibliographical references (pages 211-212)
Field of study: Electrical engineering
System Created
- 2015-06-01 08:17:39
System Modified
- 2021-08-30 01:28:28
- 3 years 2 months ago
Additional Formats