Description
Locomotion in natural environments requires coordinated movements from multiple body parts, and precise adaptations when changes in the environment occur. The contributions of the neurons of the motor cortex underlying these behaviors are poorly understood, and especially little is known about how such contributions may differ based on the anatomical and physiological characteristics of neurons. To elucidate the contributions of motor cortical subpopulations to movements, the activity of motor cortical neurons, muscle activity, and kinematics were studied in the cat during a variety of locomotion tasks requiring accurate foot placement, including some tasks involving both expected and unexpected perturbations of the movement environment. The roles of neurons with two types of neuronal characteristics were studied: the existence of somatosensory receptive fields located at the shoulder, elbow, or wrist of the contralateral forelimb; and the existence projections through the pyramidal tract, including fast- and slow-conducting subtypes.
Distinct neuronal adaptations between simple and complex locomotion tasks were observed for neurons with different receptive field properties and fast- and slow-conducting pyramidal tract neurons. Feedforward and feedback-driven kinematic control strategies were observed for adaptations to expected and unexpected perturbations, respectively, during complex locomotion tasks. These kinematic differences were reflected in the response characteristics of motor cortical neurons receptive to somatosensory information from different parts of the forelimb, elucidating roles for the various neuronal populations in accommodating disturbances in the environment during behaviors. The results show that anatomical and physiological characteristics of motor cortical neurons are important for determining if and how neurons are involved in precise control of locomotion during natural behaviors.
Distinct neuronal adaptations between simple and complex locomotion tasks were observed for neurons with different receptive field properties and fast- and slow-conducting pyramidal tract neurons. Feedforward and feedback-driven kinematic control strategies were observed for adaptations to expected and unexpected perturbations, respectively, during complex locomotion tasks. These kinematic differences were reflected in the response characteristics of motor cortical neurons receptive to somatosensory information from different parts of the forelimb, elucidating roles for the various neuronal populations in accommodating disturbances in the environment during behaviors. The results show that anatomical and physiological characteristics of motor cortical neurons are important for determining if and how neurons are involved in precise control of locomotion during natural behaviors.
Download count: 3
Details
Title
- The role of motor cortical neuron subpopulations in the adaptation of locomotion through complex environments
Contributors
- Stout, Eric (Author)
- Beloozerova, Irina N (Thesis advisor)
- Dounskaia, Natalia (Thesis advisor)
- Buneo, Christopher A (Committee member)
- Santello, Marco (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2015
Subjects
Resource Type
Collections this item is in
Note
-
thesisPartial requirement for: Ph.D., Arizona State University, 2015
-
bibliographyIncludes bibliographical references (pages 210-231)
-
Field of study: Neuroscience
Citation and reuse
Statement of Responsibility
by Eric Stout