153630-Thumbnail Image.png
Description
Tracking targets in the presence of clutter is inevitable, and presents many challenges. Additionally, rapid, drastic changes in clutter density between different environments or scenarios can make it even more difficult for tracking algorithms to adapt. A novel approach to

Tracking targets in the presence of clutter is inevitable, and presents many challenges. Additionally, rapid, drastic changes in clutter density between different environments or scenarios can make it even more difficult for tracking algorithms to adapt. A novel approach to target tracking in such dynamic clutter environments is proposed using a particle filter (PF) integrated with Interacting Multiple Models (IMMs) to compensate and adapt to the transition between different clutter densities. This model was implemented for the case of a monostatic sensor tracking a single target moving with constant velocity along a two-dimensional trajectory, which crossed between regions of drastically different clutter densities. Multiple combinations of clutter density transitions were considered, using up to three different clutter densities. It was shown that the integrated IMM PF algorithm outperforms traditional approaches such as the PF in terms of tracking results and performance. The minimal additional computational expense of including the IMM more than warrants the benefits of having it supplement and amplify the advantages of the PF.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Target tracking in environments of rapidly changing clutter
    Contributors
    Date Created
    2015
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2015
    • bibliography
      Includes bibliographical references (pages 56-59)
    • Field of study: Electrical engineering

    Citation and reuse

    Statement of Responsibility

    by Karl Dutson

    Machine-readable links