Full metadata
Title
Evaluation and mitigation of power system oscillations arising from high solar penetration
Description
An important operating aspect of all transmission systems is power system stability
and satisfactory dynamic performance. The integration of renewable resources in general, and photovoltaic resources in particular into the grid has created new engineering issues. A particularly problematic operating scenario occurs when conventional generation is operated at a low level but photovoltaic solar generation is at a high level. Significant solar photovoltaic penetration as a renewable resource is becoming a reality in some electric power systems. In this thesis, special attention is given to photovoltaic generation in an actual electric power system: increased solar penetration has resulted in significant strides towards meeting renewable portfolio standards. The impact of solar generation integration on power system dynamics is studied and evaluated.
This thesis presents the impact of high solar penetration resulting in potentially
problematic low system damping operating conditions. This is the case because the power system damping provided by conventional generation may be insufficient due to reduced system inertia and change in power flow patterns affecting synchronizing and damping capability in the AC system. This typically occurs because conventional generators are rescheduled or shut down to allow for the increased solar production. This problematic case may occur at any time of the year but during the springtime months of March-May, when the system load is low and the ambient temperature is relatively low, there is the potential that over voltages may occur in the high voltage transmission system. Also, reduced damping in system response to disturbances may occur. An actual case study is considered in which real operating system data are used. Solutions to low damping cases are discussed and a solution based on the retuning of a conventional power system stabilizer is given in the thesis.
and satisfactory dynamic performance. The integration of renewable resources in general, and photovoltaic resources in particular into the grid has created new engineering issues. A particularly problematic operating scenario occurs when conventional generation is operated at a low level but photovoltaic solar generation is at a high level. Significant solar photovoltaic penetration as a renewable resource is becoming a reality in some electric power systems. In this thesis, special attention is given to photovoltaic generation in an actual electric power system: increased solar penetration has resulted in significant strides towards meeting renewable portfolio standards. The impact of solar generation integration on power system dynamics is studied and evaluated.
This thesis presents the impact of high solar penetration resulting in potentially
problematic low system damping operating conditions. This is the case because the power system damping provided by conventional generation may be insufficient due to reduced system inertia and change in power flow patterns affecting synchronizing and damping capability in the AC system. This typically occurs because conventional generators are rescheduled or shut down to allow for the increased solar production. This problematic case may occur at any time of the year but during the springtime months of March-May, when the system load is low and the ambient temperature is relatively low, there is the potential that over voltages may occur in the high voltage transmission system. Also, reduced damping in system response to disturbances may occur. An actual case study is considered in which real operating system data are used. Solutions to low damping cases are discussed and a solution based on the retuning of a conventional power system stabilizer is given in the thesis.
Date Created
2015
Contributors
- Pethe, Anushree Sanjeev (Author)
- Vittal, Vijay (Thesis advisor)
- Heydt, Gerald T (Thesis advisor)
- Ayyanar, Raja (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xv, 65 p. : ill
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.29760
Statement of Responsibility
by Anushree Sanjeev Pethe
Description Source
Viewed on June 25, 2015
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2015
bibliography
Includes bibliographical references (p. 52-53)
Field of study: Electrical engineering
System Created
- 2015-06-01 08:06:43
System Modified
- 2021-08-30 01:29:40
- 3 years 2 months ago
Additional Formats