Full metadata
Title
Mining content and relations for social spammer detection
Description
Social networking services have emerged as an important platform for large-scale information sharing and communication. With the growing popularity of social media, spamming has become rampant in the platforms. Complex network interactions and evolving content present great challenges for social spammer detection. Different from some existing well-studied platforms, distinct characteristics of newly emerged social media data present new challenges for social spammer detection. First, texts in social media are short and potentially linked with each other via user connections. Second, it is observed that abundant contextual information may play an important role in distinguishing social spammers and normal users. Third, not only the content information but also the social connections in social media evolve very fast. Fourth, it is easy to amass vast quantities of unlabeled data in social media, but would be costly to obtain labels, which are essential for many supervised algorithms. To tackle those challenges raise in social media data, I focused on developing effective and efficient machine learning algorithms for social spammer detection.
I provide a novel and systematic study of social spammer detection in the dissertation. By analyzing the properties of social network and content information, I propose a unified framework for social spammer detection by collectively using the two types of information in social media. Motivated by psychological findings in physical world, I investigate whether sentiment analysis can help spammer detection in online social media. In particular, I conduct an exploratory study to analyze the sentiment differences between spammers and normal users; and present a novel method to incorporate sentiment information into social spammer detection framework. Given the rapidly evolving nature, I propose a novel framework to efficiently reflect the effect of newly emerging social spammers. To tackle the problem of lack of labeling data in social media, I study how to incorporate network information into text content modeling, and design strategies to select the most representative and informative instances from social media for labeling. Motivated by publicly available label information from other media platforms, I propose to make use of knowledge learned from cross-media to help spammer detection on social media.
I provide a novel and systematic study of social spammer detection in the dissertation. By analyzing the properties of social network and content information, I propose a unified framework for social spammer detection by collectively using the two types of information in social media. Motivated by psychological findings in physical world, I investigate whether sentiment analysis can help spammer detection in online social media. In particular, I conduct an exploratory study to analyze the sentiment differences between spammers and normal users; and present a novel method to incorporate sentiment information into social spammer detection framework. Given the rapidly evolving nature, I propose a novel framework to efficiently reflect the effect of newly emerging social spammers. To tackle the problem of lack of labeling data in social media, I study how to incorporate network information into text content modeling, and design strategies to select the most representative and informative instances from social media for labeling. Motivated by publicly available label information from other media platforms, I propose to make use of knowledge learned from cross-media to help spammer detection on social media.
Date Created
2015
Contributors
- Hu, Xia, Ph.D (Author)
- Liu, Huan (Thesis advisor)
- Kambhampati, Subbarao (Committee member)
- Ye, Jieping (Committee member)
- Faloutsos, Christos (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
x,117 pages : color illustrations
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.29692
Statement of Responsibility
by Xia Hu
Description Source
Viewed on June 25, 2020
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2015
bibliography
Includes bibliographical references
Field of study: Computer science
System Created
- 2015-06-01 08:05:19
System Modified
- 2021-08-30 01:30:01
- 3 years 2 months ago
Additional Formats