153259-Thumbnail Image.png
Description
With the rise of social media, hundreds of millions of people spend countless hours all over the globe on social media to connect, interact, share, and create user-generated data. This rich environment provides tremendous opportunities for many different players to

With the rise of social media, hundreds of millions of people spend countless hours all over the globe on social media to connect, interact, share, and create user-generated data. This rich environment provides tremendous opportunities for many different players to easily and effectively reach out to people, interact with them, influence them, or get their opinions. There are two pieces of information that attract most attention on social media sites, including user preferences and interactions. Businesses and organizations use this information to better understand and therefore provide customized services to social media users. This data can be used for different purposes such as, targeted advertisement, product recommendation, or even opinion mining. Social media sites use this information to better serve their users.

Despite the importance of personal information, in many cases people do not reveal this information to the public. Predicting the hidden or missing information is a common response to this challenge. In this thesis, we address the problem of predicting user attributes and future or missing links using an egocentric approach. The current research proposes novel concepts and approaches to better understand social media users in twofold including, a) their attributes, preferences, and interests, and b) their future or missing connections and interactions. More specifically, the contributions of this dissertation are (1) proposing a framework to study social media users through their attributes and link information, (2) proposing a scalable algorithm to predict user preferences; and (3) proposing a novel approach to predict attributes and links with limited information. The proposed algorithms use an egocentric approach to improve the state of the art algorithms in two directions. First by improving the prediction accuracy, and second, by increasing the scalability of the algorithms.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Understanding social media users via attributes and links
    Contributors
    Date Created
    2014
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2014
    • bibliography
      Includes bibliographical references (p. 105-111)
    • Field of study: Computer science

    Citation and reuse

    Statement of Responsibility

    by Mohammad Ali Abbasi

    Machine-readable links