Description
In this era of fast computational machines and new optimization algorithms, there have been great advances in Experimental Designs. We focus our research on design issues in generalized linear models (GLMs) and functional magnetic resonance imaging(fMRI). The first part of our research is on tackling the challenging problem of constructing
exact designs for GLMs, that are robust against parameter, link and model
uncertainties by improving an existing algorithm and providing a new one, based on using a continuous particle swarm optimization (PSO) and spectral clustering. The proposed algorithm is sufficiently versatile to accomodate most popular design selection criteria, and we concentrate on providing robust designs for GLMs, using the D and A optimality criterion. The second part of our research is on providing an algorithm
that is a faster alternative to a recently proposed genetic algorithm (GA) to construct optimal designs for fMRI studies. Our algorithm is built upon a discrete version of the PSO.
exact designs for GLMs, that are robust against parameter, link and model
uncertainties by improving an existing algorithm and providing a new one, based on using a continuous particle swarm optimization (PSO) and spectral clustering. The proposed algorithm is sufficiently versatile to accomodate most popular design selection criteria, and we concentrate on providing robust designs for GLMs, using the D and A optimality criterion. The second part of our research is on providing an algorithm
that is a faster alternative to a recently proposed genetic algorithm (GA) to construct optimal designs for fMRI studies. Our algorithm is built upon a discrete version of the PSO.
Details
Title
- Experimental designs for generalized linear models and functional magnetic resonance imaging
Contributors
- Temkit, M'Hamed (Author)
- Kao, Jason (Thesis advisor)
- Reiser, Mark R. (Committee member)
- Barber, Jarrett (Committee member)
- Montgomery, Douglas C. (Committee member)
- Pan, Rong (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2014
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2014
- bibliographyIncludes bibliographical references (p. 69-74)
- Field of study: Statistics
Citation and reuse
Statement of Responsibility
by M'Hamed Temkit