Description
Cyber threats are growing in number and sophistication making it important to continually study and improve all dimensions of cyber defense. Human teamwork in cyber defense analysis has been overlooked even though it has been identified as an important predictor of cyber defense performance. Also, to detect advanced forms of threats effective information sharing and collaboration between the cyber defense analysts becomes imperative. Therefore, through this dissertation work, I took a cognitive engineering approach to investigate and improve cyber defense teamwork. The approach involved investigating a plausible team-level bias called the information pooling bias in cyber defense analyst teams conducting the detection task that is part of forensics analysis through human-in-the-loop experimentation. The approach also involved developing agent-based models based on the experimental results to explore the cognitive underpinnings of this bias in human analysts. A prototype collaborative visualization tool was developed by considering the plausible cognitive limitations contributing to the bias to investigate whether a cognitive engineering-driven visualization tool can help mitigate the bias in comparison to off-the-shelf tools. It was found that participant teams conducting the collaborative detection tasks as part of forensics analysis, experience the information pooling bias affecting their performance. Results indicate that cognitive friendly visualizations can help mitigate the effect of this bias in cyber defense analysts. Agent-based modeling produced insights on internal cognitive processes that might be contributing to this bias which could be leveraged in building future visualizations. This work has multiple implications including the development of new knowledge about the science of cyber defense teamwork, a demonstration of the advantage of developing tools using a cognitive engineering approach, a demonstration of the advantage of using a hybrid cognitive engineering methodology to study teams in general and finally, a demonstration of the effect of effective teamwork on cyber defense performance.
Download count: 2
Details
Title
- Information pooling bias in collaborative cyber forensics
Contributors
- Rajivan, Prashanth (Author)
- Cooke, Nancy J. (Thesis advisor)
- Ahn, Gail-Joon (Committee member)
- Janssen, Marcus (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2014
Subjects
Resource Type
Collections this item is in
Note
-
thesisPartial requirement for: Ph. D., Arizona State University, 2014
-
bibliographyIncludes bibliographical references (p. 118-129)
-
Field of study: Applied psychology
Citation and reuse
Statement of Responsibility
by Prashanth Rajivan