Description
Stroke is a leading cause of disability with varying effects across stroke survivors necessitating comprehensive approaches to rehabilitation. Interactive neurorehabilitation (INR) systems represent promising technological solutions that can provide an array of sensing, feedback and analysis tools which hold the potential to maximize clinical therapy as well as extend therapy to the home. Currently, there are a variety of approaches to INR design, which coupled with minimal large-scale clinical data, has led to a lack of cohesion in INR design. INR design presents an inherently complex space as these systems have multiple users including stroke survivors, therapists and designers, each with their own user experience needs. This dissertation proposes that comprehensive INR design, which can address this complex user space, requires and benefits from the application of interdisciplinary research that spans motor learning and interactive learning. A methodology for integrated and iterative design approaches to INR task experience, assessment, hardware, software and interactive training protocol design is proposed within the comprehensive example of design and implementation of a mixed reality rehabilitation system for minimally supervised environments. This system was tested with eight stroke survivors who showed promising results in both functional and movement quality improvement. The results of testing the system with stroke survivors as well as observing user experiences will be presented along with suggested improvements to the proposed design methodology. This integrative design methodology is proposed to have benefit for not only comprehensive INR design but also complex interactive system design in general.
Download count: 2
Details
Title
- Comprehensive interactive neurorehabilitation system design and implementation through the application of interdisciplinary research and integrated design approaches
Contributors
- Baran, Michael (Author)
- Rikakis, Thanassis (Thesis advisor)
- Olson, Loren (Thesis advisor)
- Wolf, Steven L. (Committee member)
- Ingalls, Todd (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2014
Subjects
- Biomedical Engineering
- Interactive Neurorehabilitation
- Interdisciplinary
- Mixed reality
- Stroke Rehabilitation
- System design
- Cerebrovascular disease--Patients--Rehabilitation.
- Cerebrovascular disease--Interactive multimedia.
- Cerebrovascular Disease
- Interdisciplinary research--Health aspects.
- Interdisciplinary research
Resource Type
Collections this item is in
Note
-
thesisPartial requirement for: Ph. D., Arizona State University, 2014
-
bibliographyIncludes bibliographical references (p. 263-270)
-
Field of study: Media arts and sciences
Citation and reuse
Statement of Responsibility
by Michael Baran