153152-Thumbnail Image.png
Description
Globally, addiction to stimulants such as methamphetamine (METH) remains a significant public health problem. Despite decades of research, no approved anti-relapse medications for METH or any illicit stimulant exist, and current treatment approaches suffer from high relapse rates. Recently, synthetic

Globally, addiction to stimulants such as methamphetamine (METH) remains a significant public health problem. Despite decades of research, no approved anti-relapse medications for METH or any illicit stimulant exist, and current treatment approaches suffer from high relapse rates. Recently, synthetic cathinones have also emerged as popular abused stimulants, leading to numerous incidences of toxicity and death. However, contrary to traditional illicit stimulants, very little is known about their addiction potential. Given the high relapse rates and lack of approved medications for METH addiction, chapters 2 and 3 of this dissertation assessed three different glutamate receptor ligands as potential anti-relapse medications following METH intravenous self-administration (IVSA) in rats. In chapters 4 through 7, using both IVSA and intracranial self-stimulation (ICSS) procedures, experiments assessed abuse liability of the popular synthetic cathinones 3,4-Methylenedioxypyrovalerone (MDPV) , methylone, α-pyrrolidinovalerophenone (α-PVP) and 4-methylethylcathinone (4-MEC). Results from these seminal studies suggest that these drugs possess similar abuse potential to traditional illicit stimulants such as METH, cocaine, and 3,4-methylenedioxymethamphetamine (MDMA). Finally, studies outlined in chapter 8 assessed the potential neurotoxic or adverse cognitive effects of METH and MDPV following IVSA procedures for the purpose of identifying potential novel pharmacotherapeutic targets. However, results of these final studies did not reveal neurotoxic or adverse cognitive effects when using similar IVSA procedural parameters that were sufficient for establishing addiction potential, suggesting that these parameters do not allow for sufficient drug intake to produce similar neurotoxicity or cognitive deficits reported in humans. Thus, these models may be inadequate for fully modeling the adverse neural and psychological consequences of stimulant addiction. Together, these studies support the notion for continued research into the abuse liability and toxicity of METH and synthetic cathinones and suggest that refinements to traditional IVSA models are needed for both more effective assessment of potential cognitive and neural deficits induced by these drugs and screening of potentially clinically efficacious pharmacotherapeutics.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Methamphetamine and novel "legal high" methamphetamine mimetics: abuse liability, toxicity, and potential pharmacobehavioral treatments
    Contributors
    Date Created
    2014
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph. D., Arizona State University, 2014
    • bibliography
      Includes bibliographical references (p. 168-201)
    • Field of study: Psychology

    Citation and reuse

    Statement of Responsibility

    by Lucas Watterson

    Machine-readable links