Full metadata
Title
A cross-layer power analysis and profiling of wireless video sensor node platform applications
Description
Wireless video sensor networks has been examined and evaluated for wide range
of applications comprising of video surveillance, video tracking, computer vision, remote
live video and control. The reason behind importance of sensor nodes is its ease
of implementation, ability to operate in adverse environments, easy to troubleshoot,
repair and the high performance level. The biggest challenges with the architectural
design of wireless video sensor networks are power consumption, node failure,
throughput, durability and scalability. The whole project here is to create a gateway
node to integrate between "Internet of things" framework and wireless sensor network.
Our Flexi-Wireless Video Sensor Node Platform (WVSNP) is a low cost, low
power and compatible with traditional sensor network where the main focus was on
maximizing throughput or minimizing node deployment. My task here in this project
was to address the challenges of video power consumption for wireless video sensor
nodes. While addressing the challenges, I performed analysis of predicting the nodes
durability when it is battery operated and to choose appropriate design parameters.
I created a small optimized image to boot up Wandboard DUAL/QUAD board, capture
videos in small/big chunks from the board. The power analysis was performed
for only capturing scenarios, playback of reference videos and, live capturing and realtime
playing of videos on WVSNP player. Each sensor node in sensor network are
battery operated and runs without human intervention. Thus to predict nodes durability,
for dierent video size and format, I have collected power consumption results
and based on this I have provided some recommendation of HW/SW architecture.
i
of applications comprising of video surveillance, video tracking, computer vision, remote
live video and control. The reason behind importance of sensor nodes is its ease
of implementation, ability to operate in adverse environments, easy to troubleshoot,
repair and the high performance level. The biggest challenges with the architectural
design of wireless video sensor networks are power consumption, node failure,
throughput, durability and scalability. The whole project here is to create a gateway
node to integrate between "Internet of things" framework and wireless sensor network.
Our Flexi-Wireless Video Sensor Node Platform (WVSNP) is a low cost, low
power and compatible with traditional sensor network where the main focus was on
maximizing throughput or minimizing node deployment. My task here in this project
was to address the challenges of video power consumption for wireless video sensor
nodes. While addressing the challenges, I performed analysis of predicting the nodes
durability when it is battery operated and to choose appropriate design parameters.
I created a small optimized image to boot up Wandboard DUAL/QUAD board, capture
videos in small/big chunks from the board. The power analysis was performed
for only capturing scenarios, playback of reference videos and, live capturing and realtime
playing of videos on WVSNP player. Each sensor node in sensor network are
battery operated and runs without human intervention. Thus to predict nodes durability,
for dierent video size and format, I have collected power consumption results
and based on this I have provided some recommendation of HW/SW architecture.
i
Date Created
2014
Contributors
- Shah, Tejas (Author)
- Reisslein, Martin (Thesis advisor)
- Kitchen, Jennifer (Committee member)
- McGarry, Michael (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
viii, 75 p. : col. ill
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.26901
Statement of Responsibility
by Tejas Shah
Description Source
Viewed on June 12, 2015
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2014
bibliography
Includes bibliographical references (p. 72-75)
Field of study: Electrical engineering
System Created
- 2014-12-01 07:08:32
System Modified
- 2021-08-30 01:31:51
- 3 years 2 months ago
Additional Formats