Description
Group III-nitride semiconductors have been commercially used in the fabrication of light-emitting diodes and laser diodes, covering the ultraviolet-visible-infrared spectral range and exhibit unique properties suitable for modern optoelectronic applications. InGaN ternary alloys have energy band gaps ranging from 0.7 to 3.4 eV. It has a great potential in the application for high efficient solar cells. AlGaN ternary alloys have energy band gaps ranging from 3.4 to 6.2 eV. These alloys have a great potential in the application of deep ultra violet laser diodes. However, there are still many issues with these materials that remain to be solved. In this dissertation, several issues concerning structural, electronic, and optical properties of III-nitrides have been investigated using transmission electron microscopy. First, the microstructure of InxGa1-xN (x = 0.22, 0.46, 0.60, and 0.67) films grown by metal-modulated epitaxy on GaN buffer /sapphire substrates is studied. The effect of indium composition on the structure of InGaN films and strain relaxation is carefully analyzed. High luminescence intensity, low defect density, and uniform full misfit strain relaxation are observed for x = 0.67. Second, the properties of high-indium-content InGaN thin films using a new molecular beam epitaxy method have been studied for applications in solar cell technologies. This method uses a high quality AlN buffer with large lattice mismatch that results in a critical thickness below one lattice parameter. Finally, the effect of different substrates and number of gallium sources on the microstructure of AlGaN-based deep ultraviolet laser has been studied. It is found that defects in epitaxial layer are greatly reduced when the structure is deposited on a single crystal AlN substrate. Two gallium sources in the growth of multiple quantum wells active region are found to cause a significant improvement in the quality of quantum well structures.
Details
Title
- Structural properties of III-nitride semiconductors
Contributors
- Wei, Yong (Author)
- Ponce, Fernando (Thesis advisor)
- Chizmeshya, Andrew (Committee member)
- McCartney, Martha (Committee member)
- Menéndez, Jose (Committee member)
- Yu, Hongbin (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2014
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2014
- bibliographyIncludes bibliographical references
- Field of study: Physics
Citation and reuse
Statement of Responsibility
by Yong Wei