Full metadata
Title
Planning challenges in human-robot teaming
Description
As robotic technology and its various uses grow steadily more complex and ubiquitous, humans are coming into increasing contact with robotic agents. A large portion of such contact is cooperative interaction, where both humans and robots are required to work on the same application towards achieving common goals. These application scenarios are characterized by a need to leverage the strengths of each agent as part of a unified team to reach those common goals. To ensure that the robotic agent is truly a contributing team-member, it must exhibit some degree of autonomy in achieving goals that have been delegated to it. Indeed, a significant portion of the utility of such human-robot teams derives from the delegation of goals to the robot, and autonomy on the part of the robot in achieving those goals. In order to be considered truly autonomous, the robot must be able to make its own plans to achieve the goals assigned to it, with only minimal direction and assistance from the human.
Automated planning provides the solution to this problem -- indeed, one of the main motivations that underpinned the beginnings of the field of automated planning was to provide planning support for Shakey the robot with the STRIPS system. For long, however, automated planners suffered from scalability issues that precluded their application to real world, real time robotic systems. Recent decades have seen a gradual abeyance of those issues, and fast planning systems are now the norm rather than the exception. However, some of these advances in speedup and scalability have been achieved by ignoring or abstracting out challenges that real world integrated robotic systems must confront.
In this work, the problem of planning for human-hobot teaming is introduced. The central idea -- the use of automated planning systems as mediators in such human-robot teaming scenarios -- and the main challenges inspired from real world scenarios that must be addressed in order to make such planning seamless are presented: (i) Goals which can be specified or changed at execution time, after the planning process has completed; (ii) Worlds and scenarios where the state changes dynamically while a previous plan is executing; (iii) Models that are incomplete and can be changed during execution; and (iv) Information about the human agent's plan and intentions that can be used for coordination. These challenges are compounded by the fact that the human-robot team must execute in an open world, rife with dynamic events and other agents; and in a manner that encourages the exchange of information between the human and the robot. As an answer to these challenges, implemented solutions and a fielded prototype that combines all of those solutions into one planning system are discussed. Results from running this prototype in real world scenarios are presented, and extensions to some of the solutions are offered as appropriate.
Automated planning provides the solution to this problem -- indeed, one of the main motivations that underpinned the beginnings of the field of automated planning was to provide planning support for Shakey the robot with the STRIPS system. For long, however, automated planners suffered from scalability issues that precluded their application to real world, real time robotic systems. Recent decades have seen a gradual abeyance of those issues, and fast planning systems are now the norm rather than the exception. However, some of these advances in speedup and scalability have been achieved by ignoring or abstracting out challenges that real world integrated robotic systems must confront.
In this work, the problem of planning for human-hobot teaming is introduced. The central idea -- the use of automated planning systems as mediators in such human-robot teaming scenarios -- and the main challenges inspired from real world scenarios that must be addressed in order to make such planning seamless are presented: (i) Goals which can be specified or changed at execution time, after the planning process has completed; (ii) Worlds and scenarios where the state changes dynamically while a previous plan is executing; (iii) Models that are incomplete and can be changed during execution; and (iv) Information about the human agent's plan and intentions that can be used for coordination. These challenges are compounded by the fact that the human-robot team must execute in an open world, rife with dynamic events and other agents; and in a manner that encourages the exchange of information between the human and the robot. As an answer to these challenges, implemented solutions and a fielded prototype that combines all of those solutions into one planning system are discussed. Results from running this prototype in real world scenarios are presented, and extensions to some of the solutions are offered as appropriate.
Date Created
2014
Contributors
- Talamadupula, Kartik (Author)
- Kambhampati, Subbarao (Thesis advisor)
- Baral, Chitta (Committee member)
- Liu, Huan (Committee member)
- Scheutz, Matthias (Committee member)
- Smith, David E. (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
x, 141 p. : ill. (some col.)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.26860
Statement of Responsibility
by Kartik Talamadupula
Description Source
Viewed on January 22, 2015
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2014
bibliography
Includes bibliographical references (p. 133-141)
Field of study: Computer science
System Created
- 2014-12-01 07:03:11
System Modified
- 2021-08-30 01:32:07
- 3 years 2 months ago
Additional Formats