Full metadata
Title
Optimization of the implementation of renewable resources in a municipal electric utility in Arizona
Description
A municipal electric utility in Mesa, Arizona with a peak load of approximately 85 megawatts (MW) was analyzed to determine how the implementation of renewable resources (both wind and solar) would affect the overall cost of energy purchased by the utility. The utility currently purchases all of its energy through long term energy supply contracts and does not own any generation assets and so optimization was achieved by minimizing the overall cost of energy while adhering to specific constraints on how much energy the utility could purchase from the short term energy market. Scenarios were analyzed for a five percent and a ten percent penetration of renewable energy in the years 2015 and 2025. Demand Side Management measures (through thermal storage in the City's district cooling system, electric vehicles, and customers' air conditioning improvements) were evaluated to determine if they would mitigate some of the cost increases that resulted from the addition of renewable resources.
In the 2015 simulation, wind energy was less expensive than solar to integrate to the supply mix. When five percent of the utility's energy requirements in 2015 are met by wind, this caused a 3.59% increase in the overall cost of energy. When that five percent is met by solar in 2015, it is estimated to cause a 3.62% increase in the overall cost of energy. A mix of wind and solar in 2015 caused a lower increase in the overall cost of energy of 3.57%. At the ten percent implementation level in 2015, solar, wind, and a mix of solar and wind caused increases of 7.28%, 7.51% and 7.27% respectively in the overall cost of energy.
In 2025, at the five percent implementation level, wind and solar caused increases in the overall cost of energy of 3.07% and 2.22% respectively. In 2025, at the ten percent implementation level, wind and solar caused increases in the overall cost of energy of 6.23% and 4.67% respectively.
Demand Side Management reduced the overall cost of energy by approximately 0.6%, mitigating some of the cost increase from adding renewable resources.
In the 2015 simulation, wind energy was less expensive than solar to integrate to the supply mix. When five percent of the utility's energy requirements in 2015 are met by wind, this caused a 3.59% increase in the overall cost of energy. When that five percent is met by solar in 2015, it is estimated to cause a 3.62% increase in the overall cost of energy. A mix of wind and solar in 2015 caused a lower increase in the overall cost of energy of 3.57%. At the ten percent implementation level in 2015, solar, wind, and a mix of solar and wind caused increases of 7.28%, 7.51% and 7.27% respectively in the overall cost of energy.
In 2025, at the five percent implementation level, wind and solar caused increases in the overall cost of energy of 3.07% and 2.22% respectively. In 2025, at the ten percent implementation level, wind and solar caused increases in the overall cost of energy of 6.23% and 4.67% respectively.
Demand Side Management reduced the overall cost of energy by approximately 0.6%, mitigating some of the cost increase from adding renewable resources.
Date Created
2014
Contributors
- Cadorin, Anthony (Author)
- Phelan, Patrick (Thesis advisor)
- Calhoun, Ronald (Committee member)
- Trimble, Steve (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xvii, 111 p. : ill. (some col.), col. map
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.26855
Statement of Responsibility
by Anthony Cadorin
Description Source
Viewed on January 22, 2015
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2014
bibliography
Includes bibliographical references (p. 98-104)
Field of study: Mechanical engineering
System Created
- 2014-12-01 07:02:31
System Modified
- 2021-08-30 01:32:07
- 3 years 2 months ago
Additional Formats