Description
A firewall is a necessary component for network security and just like any regular equipment it requires maintenance. To keep up with changing cyber security trends and threats, firewall rules are modified frequently. Over time such modifications increase the complexity, size and verbosity of firewall rules. As the rule set grows in size, adding and modifying rule becomes a tedious task. This discourages network administrators to review the work done by previous administrators before and after applying any changes. As a result the quality and efficiency of the firewall goes down.
Modification and addition of rules without knowledge of previous rules creates anomalies like shadowing and rule redundancy. Anomalous rule sets not only limit the efficiency of the firewall but in some cases create a hole in the perimeter security. Detection of anomalies has been studied for a long time and some well established procedures have been implemented and tested. But they all have a common problem of visualizing the results. When it comes to visualization of firewall anomalies, the results do not fit in traditional matrix, tree or sunburst representations.
This research targets the anomaly detection and visualization problem. It analyzes and represents firewall rule anomalies in innovative ways such as hive plots and dynamic slices. Such graphical representations of rule anomalies are useful in understanding the state of a firewall. It also helps network administrators in finding and fixing the anomalous rules.
Modification and addition of rules without knowledge of previous rules creates anomalies like shadowing and rule redundancy. Anomalous rule sets not only limit the efficiency of the firewall but in some cases create a hole in the perimeter security. Detection of anomalies has been studied for a long time and some well established procedures have been implemented and tested. But they all have a common problem of visualizing the results. When it comes to visualization of firewall anomalies, the results do not fit in traditional matrix, tree or sunburst representations.
This research targets the anomaly detection and visualization problem. It analyzes and represents firewall rule anomalies in innovative ways such as hive plots and dynamic slices. Such graphical representations of rule anomalies are useful in understanding the state of a firewall. It also helps network administrators in finding and fixing the anomalous rules.
Details
Title
- Firewall rule set analysis and visualization
Contributors
- Khatkar, Pankaj Kumar (Author)
- Huang, Dijiang (Thesis advisor)
- Ahn, Gail-Joon (Committee member)
- Syrotiuk, Violet R. (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2014
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: M.S., Arizona State University, 2014
- bibliographyIncludes bibliographical references (p. 46-49)
- Field of study: Computer science
Citation and reuse
Statement of Responsibility
by Pankaj Kumar Khatkar