Description
Research in the learning sciences suggests that students learn better by collaborating with their peers than learning individually. Students working together as a group tend to generate new ideas more frequently and exhibit a higher level of reasoning. In this internet age with the advent of massive open online courses (MOOCs), students across the world are able to access and learn material remotely. This creates a need for tools that support distant or remote collaboration. In order to build such tools we need to understand the basic elements of remote collaboration and how it differs from traditional face-to-face collaboration.
The main goal of this thesis is to explore how spoken dialogue varies in face-to-face and remote collaborative learning settings. Speech data is collected from student participants solving mathematical problems collaboratively on a tablet. Spoken dialogue is analyzed based on conversational and acoustic features in both the settings. Looking for collaborative differences of transactivity and dialogue initiative, both settings are compared in detail using machine learning classification techniques based on acoustic and prosodic features of speech. Transactivity is defined as a joint construction of knowledge by peers. The main contributions of this thesis are: a speech corpus to analyze spoken dialogue in face-to-face and remote settings and an empirical analysis of conversation, collaboration, and speech prosody in both the settings. The results from the experiments show that amount of overlap is lower in remote dialogue than in the face-to-face setting. There is a significant difference in transactivity among strangers. My research benefits the computer-supported collaborative learning community by providing an analysis that can be used to build more efficient tools for supporting remote collaborative learning.
The main goal of this thesis is to explore how spoken dialogue varies in face-to-face and remote collaborative learning settings. Speech data is collected from student participants solving mathematical problems collaboratively on a tablet. Spoken dialogue is analyzed based on conversational and acoustic features in both the settings. Looking for collaborative differences of transactivity and dialogue initiative, both settings are compared in detail using machine learning classification techniques based on acoustic and prosodic features of speech. Transactivity is defined as a joint construction of knowledge by peers. The main contributions of this thesis are: a speech corpus to analyze spoken dialogue in face-to-face and remote settings and an empirical analysis of conversation, collaboration, and speech prosody in both the settings. The results from the experiments show that amount of overlap is lower in remote dialogue than in the face-to-face setting. There is a significant difference in transactivity among strangers. My research benefits the computer-supported collaborative learning community by providing an analysis that can be used to build more efficient tools for supporting remote collaborative learning.
Download count: 1
Details
Title
- Spoken dialogue in face-to-face and remote collaborative learning environments
Contributors
- Nelakurthi, Arun Reddy (Author)
- Pon-Barry, Heather (Thesis advisor)
- VanLehn, Kurt (Committee member)
- Walker, Erin (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2014
Subjects
Resource Type
Collections this item is in
Note
-
thesisPartial requirement for: M.S., Arizona State University, 2014
-
bibliographyIncludes bibliographical references (p. 44-45)
-
Field of study: Computer science
Citation and reuse
Statement of Responsibility
by Arun Reddy Nelakurthi