Description
Patients with malignant brain tumors have a median survival of approximately 15 months following diagnosis, regardless of currently available treatments which include surgery followed by radiation and chemotherapy. Improvement in the survival of brain cancer patients requires the design of new therapeutic modalities that take advantage of common phenotypes. One such phenotype is the metabolic dysregulation that is a hallmark of cancer cells. It has therefore been postulated that one approach to treating brain tumors may be by metabolic alteration such as that which occurs through the use of the ketogenic diet (KD). The KD is high-fat, low-carbohydrate diet that induces ketosis and has been utilized for the non-pharmacologic treatment of refractory epilepsy. It has been shown that this metabolic therapy enhances survival and potentiates standard therapy in mouse models of malignant gliomas, yet the anti-tumor mechanisms are not fully understood.
The current study reports that KetoCal® (KC; 4:1 fat:protein/carbohydrates), fed ad libitum, alters hypoxia, angiogenic, and inflammatory pathways in a mouse model of glioma. Tumors from animals maintained on KC showed reduced expression of the hypoxia marker carbonic anhydrase 9 (CA IX), a reduction in hypoxia inducible factor 1-alpha (HIF-1α) and decreased activation of nuclear factor kappa B (NF-κB). Animals maintained on KC also showed a reduction in expression of vascular endothelial growth factor receptor 2 (VEGFR2) and decreased microvasculature in their tumors. Further, peritumoral edema was significantly reduced in animals fed the KC and protein analysis showed significantly altered expression of the tight junction protein zona occludens-1 (ZO-1) and the water channeling protein aquaporin-4 (AQP4), both of which have been implicated in malignant processes in glioma, including the formation of peritumoral edema in patients. Taken together the data suggests that KC alters multiple processes involved in malignant progression of gliomas. A greater understanding of the effects of the ketogenic diet as an adjuvant therapy will allow for a more rational approach to its clinical use.
The current study reports that KetoCal® (KC; 4:1 fat:protein/carbohydrates), fed ad libitum, alters hypoxia, angiogenic, and inflammatory pathways in a mouse model of glioma. Tumors from animals maintained on KC showed reduced expression of the hypoxia marker carbonic anhydrase 9 (CA IX), a reduction in hypoxia inducible factor 1-alpha (HIF-1α) and decreased activation of nuclear factor kappa B (NF-κB). Animals maintained on KC also showed a reduction in expression of vascular endothelial growth factor receptor 2 (VEGFR2) and decreased microvasculature in their tumors. Further, peritumoral edema was significantly reduced in animals fed the KC and protein analysis showed significantly altered expression of the tight junction protein zona occludens-1 (ZO-1) and the water channeling protein aquaporin-4 (AQP4), both of which have been implicated in malignant processes in glioma, including the formation of peritumoral edema in patients. Taken together the data suggests that KC alters multiple processes involved in malignant progression of gliomas. A greater understanding of the effects of the ketogenic diet as an adjuvant therapy will allow for a more rational approach to its clinical use.
Details
Title
- The ketogenic diet in the treatment of malignant glioma: mechanistic effects on hypoxia and angiogenesis
Contributors
- Woolf, Eric C (Author)
- Scheck, Adrienne C (Thesis advisor)
- Lake, Douglas F (Committee member)
- LaBaer, Joshua (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2014
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: M.S., Arizona State University, 2014
- Field of study: Biology
Citation and reuse
Statement of Responsibility
by Eric C. Woolf