152857-Thumbnail Image.png
Description
This dissertation applies the Bayesian approach as a method to improve the estimation efficiency of existing econometric tools. The first chapter suggests the Continuous Choice Bayesian (CCB) estimator which combines the Bayesian approach with the Continuous Choice (CC) estimator suggested

This dissertation applies the Bayesian approach as a method to improve the estimation efficiency of existing econometric tools. The first chapter suggests the Continuous Choice Bayesian (CCB) estimator which combines the Bayesian approach with the Continuous Choice (CC) estimator suggested by Imai and Keane (2004). Using simulation study, I provide two important findings. First, the CC estimator clearly has better finite sample properties compared to a frequently used Discrete Choice (DC) estimator. Second, the CCB estimator has better estimation efficiency when data size is relatively small and it still retains the advantage of the CC estimator over the DC estimator. The second chapter estimates baseball's managerial efficiency using a stochastic frontier function with the Bayesian approach. When I apply a stochastic frontier model to baseball panel data, the difficult part is that dataset often has a small number of periods, which result in large estimation variance. To overcome this problem, I apply the Bayesian approach to a stochastic frontier analysis. I compare the confidence interval of efficiencies from the Bayesian estimator with the classical frequentist confidence interval. Simulation results show that when I use the Bayesian approach, I achieve smaller estimation variance while I do not lose any reliability in a point estimation. Then, I apply the Bayesian stochastic frontier analysis to answer some interesting questions in baseball.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Application of Bayesian methods to structural models and stochastic frontier production models
    Contributors
    Date Created
    2014
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2014
    • bibliography
      Includes bibliographical references (pages 81-84 )
    • Field of study: Economics

    Citation and reuse

    Statement of Responsibility

    by Kwang-shin Choi

    Machine-readable links