Full metadata
Title
Luminescent cyclometalated platinum and palladium complexes with novel photophysical properties
Description
Organic light emitting diodes (OLEDs) is a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. In less than a decade, OLEDs have grown from a promising academic curiosity into a multi-billion dollar global industry. At the heart of an OLED are emissive molecules that generate light in response to electrical stimulation. Ideal emitters are efficient, compatible with existing materials, long lived, and produce light predominantly at useful wavelengths. Developing an understanding of the photophysical processes that dictate the luminescent properties of emissive materials is vital to their continued development. Chapter 1 and Chapter 2 provide an introduction to the topics presented and the laboratory methods used to explore them. Chapter 3 discusses a series of tridentate platinum complexes. A synthetic method utilizing microwave irradiation was explored, as well as a study of the effects ligand structure had on the excited state properties. Results and techniques developed in this endeavor were used as a foundation for the work undertaken in later chapters. Chapter 4 introduces a series of tetradentate platinum complexes that share a phenoxy-pyridyl (popy) motif. The new molecular design improved efficiency through increased rigidity and modification of the excited state properties. This class of platinum complexes were markedly more efficient than those presented in Chapter 3, and devices employing a green emitting complex of the series achieved nearly 100% electron-to-photon conversion efficiency in an OLED device. Chapter 5 adapts the ligand structure developed in Chapter 4 to palladium. The resulting complexes exceed reported efficiencies of palladium complexes by an order of magnitude. This chapter also provides the first report of a palladium complex as an emitter in an OLED device. Chapter 6 discusses the continuation of development efforts to include carbazolyl components in the ligand. These complexes possess interesting luminescent properties including ultra-narrow emission and metal assisted delayed fluorescence (MADF) emission.
Date Created
2014
Contributors
- Turner, Eric (Author)
- Li, Jian (Thesis advisor)
- Adams, James (Committee member)
- Alford, Terry (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xiii, 133 p. : ill. (some col.)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.25189
Statement of Responsibility
by Eric Turner
Description Source
Retrieved on Aug. 29, 2014
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2014
bibliography
Includes bibliographical references (p. 124-133)
Field of study: Materials science and engineering
System Created
- 2014-06-09 02:21:42
System Modified
- 2021-08-30 01:33:43
- 3 years 2 months ago
Additional Formats