152667-Thumbnail Image.png
Description
Photochromic molecules, which photoisomerize between two chemically and optically distinct states, are well suited for electron and energy transfer to covalently attached chromophores. This dissertation aims to manipulate electron and energy transfer by photochromic control in a number of organic

Photochromic molecules, which photoisomerize between two chemically and optically distinct states, are well suited for electron and energy transfer to covalently attached chromophores. This dissertation aims to manipulate electron and energy transfer by photochromic control in a number of organic molecular systems. Herein the synthesis, characterization and function of these organic molecular systems will be described. Electron and energy transfer were quantified by the use of steady state absorbance and fluorescence, as well as time-resolved fluorescence and transient absorbance. A dithienylethene-porphrin-fullerene triad was synthesized to investigate photochromic control of photo-induced electron transfer. Control of two distinct electron transfer pathways was achieved by photochromic switching. A molecular dyad was synthesized, in which fluorescence was modulated by energy transfer by photoinduced isomerization. Also described is a triplet-triplet annihilation upconversion system that covalently attaches fluorophores to improve quantum yield. Overall these studies demonstrate complex molecular switching systems, which may lead to advancement in organic electronic applications and organic based artificial photosynthesis systems.
Reuse Permissions


  • Download restricted.
    Download count: 1

    Details

    Title
    • Energy and electron transfer in photochromic molecules
    Contributors
    Date Created
    2014
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2014
    • bibliography
      Includes bibliographical references (p. 44-45)
    • Field of study: Chemistry

    Citation and reuse

    Statement of Responsibility

    by Jeffrey Crisman

    Machine-readable links