152292-Thumbnail Image.png
Description
A thorough understanding of Europa's geology through the synergy of science and technology, by combining geologic mapping with autonomous onboard processing methods, enhances the science potential of future outer solar system missions. Mapping outlines the current state of knowledge of

A thorough understanding of Europa's geology through the synergy of science and technology, by combining geologic mapping with autonomous onboard processing methods, enhances the science potential of future outer solar system missions. Mapping outlines the current state of knowledge of Europa's surface and near sub-surface, indicates the prevalence of distinctive geologic features, and enables a uniform perspective of formation mechanisms responsible for generating those features. I have produced a global geologic map of Europa at 1:15 million scale and appraised formation scenarios with respect to conditions necessary to produce observed morphologies and variability of those conditions over Europa's visible geologic history. Mapping identifies areas of interest relevant for autonomous study; it serves as an index for change detection and classification and aids pre-encounter targeting. Therefore, determining the detectability of geophysical activity is essential. Activity is evident by the presence of volcanic plumes or outgassing, disrupted surface morphologies, or changes in morphology, color, temperature, or composition; these characteristics reflect important constraints on the interior dynamics and evolutions of planetary bodies. By adapting machine learning and data mining techniques to signatures of plumes, morphology, and spectra, I have successfully demonstrated autonomous rule-based response and detection, identification, and classification of known events and features on outer planetary bodies using the following methods: 1. Edge-detection, which identifies the planetary horizon and highlights features extending beyond the limb; 2. Spectral matching using a superpixel endmember detection algorithm that identifies mean spectral signatures; and 3. Scale invariant feature transforms combined with supervised classification, which examines brightness gradients throughout an image, highlights extreme gradient regions, and classifies those regions based on a manually selected library of features. I have demonstrated autonomous: detection of volcanic plumes or jets at Io, Enceladus, and several comets, correlation between spectral signatures and morphological appearances of Europa's individual tectonic features, detection of ≤94% of known transient events on multiple planetary bodies, and classification of similar geologic features. Applying these results to conditions expected for Europa enables a prediction of the potential for detection and recommendations for mission concepts to increase the science return and efficiency of future missions to observe Europa.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Utilizing science and technology to enhance a future planetary mission: applications to Europa
    Contributors
    Date Created
    2013
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2013
    • bibliography
      Includes bibliographical references (p. 214-237)
    • Field of study: Geological sciences

    Citation and reuse

    Statement of Responsibility

    by Melissa K. Bunte

    Machine-readable links