Description
Obesity is currently a prevalent health concern in the United States. Essential to combating it are accurate methods of assessing individual dietary intake under ad libitum conditions. The acoustical monitoring system (AMS), consisting of a throat microphone and jaw strain sensor, has been proposed as a non-invasive method for tracking free-living eating events. This study assessed the accuracy of eating events tracked by the AMS, compared to the validated vending machine system used by the NIDDK in Phoenix. Application of AMS data toward estimation of mass and calories consumed was also considered. In this study, 10 participants wore the AMS in a clinical setting for 24 hours while all food intake was recorded by the vending machine. Results indicated a correlation of 0.76 between number of eating events by the AMS and the vending machine (p = 0.019). A dependent T-test yielded a p-value of 0.799, illustrating a lack of significant difference between these methods of tracking intake. Finally, number of seconds identified as eating by the AMS had a 0.91 correlation with mass of intake (p = 0.001) and a 0.70 correlation with calories of intake (p = 0.034). These results indicate that the AMS is a valid method of objectively recording eating events under ad libitum conditions. Additional research is required to validate this device under free-living conditions.
Details
Title
- Use of a non-invasive acoustical monitoring system to predict ad libitum eating events
Contributors
- Steinke, Amanda (Author)
- Johnston, Carol (Thesis advisor)
- Votruba, Susanne (Committee member)
- Hall, Richard (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2013
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: M.S., Arizona State University, 2013
- bibliographyIncludes bibliographical references (p. 62-70)
- Field of study: Nutrition
Citation and reuse
Statement of Responsibility
by Amanda Steinke