Full metadata
Title
Analytical control grid registration for efficient application of optical flow
Description
Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.
Date Created
2013
Contributors
- Zwart, Christine M. (Author)
- Frakes, David H (Thesis advisor)
- Karam, Lina (Committee member)
- Kodibagkar, Vikram (Committee member)
- Spanias, Andreas (Committee member)
- Towe, Bruce (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
ix, 150 p. : ill. (some col.)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.17831
Statement of Responsibility
by Christine M. Zwart
Description Source
Viewed on Nov. 14, 2013
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2013
bibliography
Includes bibliographical references (p. 108-116)
Field of study: Bioengineering
System Created
- 2013-07-12 06:19:39
System Modified
- 2021-08-30 01:42:14
- 3 years 2 months ago
Additional Formats