Description
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is widely accepted as the world's most abundant enzyme and represents the primary entry point for inorganic carbon into the biosphere. Rubisco's slow carboxylation rate of ribulose-1,5-bisphosphate (RuBP) and its susceptibility to inhibition has led some to term it the "bottle neck" of photosynthesis. In order to ensure that Rubisco remains uninhibited, plants require the catalytic chaperone Rubisco activase. Activase is a member of the AAA+ superfamily, ATPases associated with various cellular activities, and uses ATP hydrolysis as the driving force behind a conformational movement that returns activity to inhibited Rubisco active sites. A high resolution activase structure will be an essential tool for examining Rubisco/activase interactions as well as understanding the activase self-association phenomenon. Rubisco activase has long eluded crystallization, likely due to its infamous self-association (polydispersity). Therefore, a limited proteolysis approach was taken to identify soluble activase subdomains as potential crystallization targets. This process involves using proteolytic enzymes to cleave a protein into a few pieces and has previously proven successful in identifying crystallizable protein fragments. Limited proteolysis, utilizing two different proteolytic enzymes (alpha-chymotrypsin and trypsin), identified two tobacco activase products. The fragments that were identified appear to represent most of what is considered to be the AAA+ C-terminal all alpha-domain and some of the AAA+ N-terminal alpha beta alpha-domain. Identified fragments were cloned using the pET151/dTOPO. The project then moved towards cloning and recombinant protein expression in E. coli. NtAbeta(248-383) and NtAbeta(253-354) were successfully cloned, expressed, purified, and characterized through various biophysical techniques. A thermofluor assay of NtAbeta(248-383) revealed a melting temperature of about 30°C, indicating lower thermal stability compared with full-length activase at 43°C. Size exclusion chromatography suggested that NtAbeta(248-383) is monomeric. Circular dichroism was used to identify the secondary structure; a plurality of alpha-helices. NtAbeta(248-383) and NtAbeta(253-354) were subjected to crystallization trials.
Details
Title
- Limited proteolysis of the AAA+ protein Rubisco activase from Nicotiana tabacum
Contributors
- Conrad, Alan (Author)
- Wachter, Rebekka (Thesis advisor)
- Moore, Thomas (Committee member)
- Redding, Kevin (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2012
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: M.S., Arizona State University, 2012
- bibliographyIncludes bibliographical references (p. 38-41)
- Field of study: Biochemistry
Citation and reuse
Statement of Responsibility
by Alan Conrad