Description
The Philadelphia chromosome in humans, is on oncogenic translocation between chromosomes 9 and 22 that gives rise to the fusion protein BCR-Abl. This protein is constitutively active resulting in rapid and uncontrolled cell growth in affected cells. The BCR-Abl protein is the hallmark feature of chronic myeloid leukemia (CML) and is seen in Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL) cases. Currently, the first line of treatment is the Abl specific inhibitor Imatinib. Some patients will, however, develop resistance to Imatinib. Research has shown how transformation of progenitor B cells with v-Abl, an oncogene expressed by the Abelson murine leukemia virus, causes rapid proliferation, prevents further differentiation and produces a potentially malignant transformation. We have used progenitor B cells transformed with a temperature-sensitive form of the v-Abl protein that allows us to inactivate or re-activate v-Abl by shifting the incubation temperature. We are trying to use this line as a model to study both the progression from pre-malignancy to malignancy in CML and Imatinib resistance in Ph+ ALL and CML. These progenitor B cells, once v-Abl is reactivated, in most cases, will not return to their natural cell cycle. In this they resemble Ph+ ALL and CML under Imatinib treatment. With some manipulation these cells can break this prolonged G1 arrested phenotype and become a malignant cell line and resistant to Imatinib treatment. Cellular senescence can be a complicated process requiring inter-play between a variety of players. It serves as an alternate option to apoptosis, in that the cell loses proliferative potential, but does not die. Treatment with some cancer therapeutics will induce senescence in some cancers. Such is the case with Imatinib treatment of CML and Ph+ ALL. By using the S9 cell line we have been able to explore the possible routes for breaking of prolonged G1 arrest in these Ph+ leukemias. We inhibited the DNA damage sensor protein ataxia telangiectasia mutated (ATM) and found that prolonged G1 arrest in our S9 cells was broken. While previous research has suggested that the DNA damage sensor protein ataxia-telangiectasia mutated (ATM) has little impact in CML, our research indicates that ATM may play a role in either senescence induction or release.
Details
Title
- Breaking the senescence: inhibition of ATM allows S9 cells to re-enter cell cycle
Contributors
- Dixon, Sarah E (Author)
- Chang, Yung (Thesis advisor)
- Clark-Curtiss, Josephine (Committee member)
- Touchman, Jeffrey (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2011
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: M.S., Arizona State University, 2011
- bibliographyIncludes bibliographical references (p. 35-39)
- Field of study: Microbiology
Citation and reuse
Statement of Responsibility
by Sarah E. Dixon