Full metadata
Title
Biological and immunological characterization of plant-produced HIV-1 Gag/dgp41 virus-like particles
Description
Anti-retroviral drugs and AIDS prevention programs have helped to decrease the rate of new HIV-1 infections in some communities, however, a prophylactic vaccine is still needed to control the epidemic world-wide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although recent clinical trials have shown promising results. Recent successes have focused on highly conserved, mucosally-targeted antigens within HIV-1 such as the membrane proximal external region (MPER) of the envelope protein, gp41. MPER has been shown to play critical roles in the viral mucosal transmission, though this peptide is not immunogenic on its own. Gag is a structural protein configuring the enveloped virus particles, and has been suggested to constitute a target of the cellular immunity potentially controlling the viral load. It was hypothesized that HIV-1 enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the MPER, transmembrane, and cytoplasmic domains (dgp41) could be expressed in plants. Plant-optimized HIV-1 genes were constructed and expressed in Nicotiana benthamiana by stable transformation, or transiently using a tobacco mosaic virus-based expression system or a combination of both. Results of biophysical, biochemical and electron microscopy characterization demonstrated that plant cells could support not only the formation of HIV-1 Gag VLPs, but also the accumulation of VLPs that incorporated dgp41. These particles were purified and utilized in mice immunization experiments. Prime-boost strategies combining systemic and mucosal priming with systemic boosting using two different vaccine candidates (VLPs and CTB-MPR - a fusion of MPER and the B-subunit of cholera toxin) were administered to BALB/c mice. Serum antibody responses against both the Gag and gp41 antigens could be elicited in mice systemically primed with VLPs and these responses could be recalled following systemic boosting with VLPs. In addition, mucosal priming with VLPs allowed for a robust boosting response against Gag and gp41 when boosted with either candidate. Functional assays of these antibodies are in progress to test the antibodies' effectiveness in neutralizing and preventing mucosal transmission of HIV-1. This immunogenicity of plant-based Gag/dgp41 VLPs represents an important milestone on the road towards a broadly-efficacious and inexpensive subunit vaccine against HIV-1.
Date Created
2011
Contributors
- Kessans, Sarah (Author)
- Mor, Tsafrir S (Thesis advisor)
- Matoba, Nobuyuki (Committee member)
- Mason, Hugh (Committee member)
- Hogue, Brenda (Committee member)
- Fromme, Petra (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xiv, 141 p. : col. ill
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.14417
Statement of Responsibility
by Sarah Kessans
Description Source
Retrieved on Oct. 31, 2012
Level of coding
full
Note
Vita
thesis
Partial requirement for: Ph.D., Arizona State University, 2011
bibliography
Includes bibliographical references (p. 118-149)
Field of study: Molecular and cellular biology
System Created
- 2012-08-24 06:11:36
System Modified
- 2021-08-30 01:49:31
- 3 years 2 months ago
Additional Formats