Full metadata
Title
Novel biopolymer treatment for wind induced soil erosion
Description
It is estimated that wind induced soil transports more than 500 x 106 metric tons of fugitive dust annually. Soil erosion has negative effects on human health, the productivity of farms, and the quality of surface waters. A variety of different polymer stabilizers are available on the market for fugitive dust control. Most of these polymer stabilizers are expensive synthetic polymer products. Their adverse effects and expense usually limits their use. Biopolymers provide a potential alternative to synthetic polymers. They can provide dust abatement by encapsulating soil particles and creating a binding network throughout the treated area. This research into the effectiveness of biopolymers for fugitive dust control involved three phases. Phase I included proof of concept tests. Phase II included carrying out the tests in a wind tunnel. Phase III consisted of conducting the experiments in the field. Proof of concept tests showed that biopolymers have the potential to reduce soil erosion and fugitive dust transport. Wind tunnel tests on two candidate biopolymers, xanthan and chitosan, showed that there is a proportional relationship between biopolymer application rates and threshold wind velocities. The wind tunnel tests also showed that xanthan gum is more successful in the field than chitosan. The field tests showed that xanthan gum was effective at controlling soil erosion. However, the chitosan field data was inconsistent with the xanthan data and field data on bare soil.
Date Created
2011
Contributors
- Alsanad, Abdullah (Author)
- Kavazanjian, Edward (Thesis advisor)
- Edwards, David (Committee member)
- Zapata, Claudia (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xviii, 19-233 p. : ill. (some col.), col. map
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.9118
Statement of Responsibility
Abdullah Alsanad
Description Source
Viewed on Dec 6, 2011
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2011
bibliography
Includes bibliographical references (p. 167-173)
Field of study: Civil and environmental engineering
System Created
- 2011-08-12 04:27:54
System Modified
- 2021-08-30 01:53:35
- 3 years 2 months ago
Additional Formats