Full metadata
Title
Molecular chaperones of the endoplasmic reticulum promote hepatitis C virus E2 protein production in plants
Description
Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most common cancers. Therefore, vaccines against HCV are under intense study in order to prevent HCV from harming people's health. The envelope protein 2 (E2) of HCV is thought to be a promising vaccine candidate because it can directly bind to a human cell receptor and plays a role in viral entry. However, the E2 protein production in cells is inefficient due to its complicated matured structure. Folding of E2 in the endoplasmic reticulum (ER) is often error-prone, resulting in production of aggregates and misfolded proteins. These incorrect forms of E2 are not functional because they are not able to bind to human cells and stimulate antibody response to inhibit this binding. This study is aimed to overcome the difficulties of HCV E2 production in plant system. Protein folding in the ER requires great assistance from molecular chaperones. Thus, in this study, two molecular chaperones in the ER, calreticulin and calnexin, were transiently overexpressed in plant leaves in order to facilitate E2 folding and production. Both of them showed benefits in increasing the yield of E2 and improving the quality of E2. In addition, poorly folded E2 accumulated in the ER may cause stress in the ER and trigger transcriptional activation of ER molecular chaperones. Therefore, a transcription factor involved in this pathway, named bZIP60, was also overexpressed in plant leaves, aiming at up-regulating a major family of molecular chaperones called BiP to assist protein folding. However, our results showed that BiP mRNA levels were not up-regulated by bZIP60, but they increased in response to E2 expression. The Western blot analysis also showed that overexpression of bZIP60 had a small effect on promoting E2 folding. Overall, this study suggested that increasing the level of specific ER molecular chaperones was an effective way to promote HCV E2 protein production and maturation.
Date Created
2011
Contributors
- Hong, Fan (Author)
- Mason, Hugh (Thesis advisor)
- Gaxiola, Roberto (Committee member)
- Chang, Yung (Committee member)
- Chen, Qiang (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xi, 71 p. : ill. (some col.)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.9021
Statement of Responsibility
by Fan Hong
Description Source
Retrieved on Oct. 12, 2012
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2011
bibliography
Includes bibliographical references (p. 64-67)
Field of study: Biological design
System Created
- 2011-08-12 03:51:27
System Modified
- 2021-08-30 01:54:19
- 3 years 2 months ago
Additional Formats