149541-Thumbnail Image.png
Description
Like most other phototrophic organisms the cyanobacterium Synechocystis sp. PCC 6803 produces carotenoids. These pigments often bind to proteins and assume various functions in light harvesting, protection from reactive oxygen species (ROS) and protein stabilization. One hypothesis was that carotenoids

Like most other phototrophic organisms the cyanobacterium Synechocystis sp. PCC 6803 produces carotenoids. These pigments often bind to proteins and assume various functions in light harvesting, protection from reactive oxygen species (ROS) and protein stabilization. One hypothesis was that carotenoids bind to the surface (S-)layer protein. In this work the Synechocystis S-layer protein was identified as Sll1951 and the effect on the carotenoid composition of this prokaryote by disruption of sll1951 was studied. Loss of the S-layer, which was demonstrated by electron microscopy, did not result in loss of carotenoids or changes in the carotenoid profile of the mutant, which was shown by HPLC and protein analysis. Although Δsll1951 was more susceptible to osmotic stress than the wild type, the general viability of the mutant remained unaffected. In a different study a combination of mutants having single or multiple deletions of putative carotenoid cleavage dioxygenase (CCD) genes was created. CCDs are presumed to play a role in the breakdown of carotenoids or apo-carotenoids. The carotenoid profiles of the mutants that were grown under conditions of increased reactive oxygen species were analyzed by HPLC. Pigment lifetimes of all strains were estimated by 13C-labeling. Carotenoid composition and metabolism were similar in all strains leading to the conclusion that the deleted CCDs do not affect carotenoid turnover in Synechocystis. The putative CCDs either do not fulfill this function in cyanobacteria or alternative pathways for carotenoid degradation exist. Finally, slr0941, a gene of unknown function but a conserved genome position in many cyanobacteria downstream of the δ-carotene desaturase, was disrupted. Initially, the mutant strain was impaired in growth but displayed a rather normal carotenoid content and composition, but an apparent second-site mutation occurred infrequently that restored growth rates and caused an accumulation of carotenoid isomers not found in the wild type. Based on the obtained data a role of the slr0941 gene in carotenoid binding/positioning for isomerization and further conversion to mature carotenoids is suggested.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Synechocystis mutants lacking genes potentially involved in carotenoid metabolism
    Contributors
    Date Created
    2011
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2011
    • bibliography
      Includes bibliographical references
    • Field of study: Microbiology

    Citation and reuse

    Statement of Responsibility

    by Christoph Trautner

    Machine-readable links