Description
The rheological properties at liquid-liquid interfaces are important in many industrial processes such as manufacturing foods, pharmaceuticals, cosmetics, and petroleum products. This dissertation focuses on the study of linear viscoelastic properties at liquid-liquid interfaces by tracking the thermal motion of particles confined at the interfaces. The technique of interfacial microrheology is first developed using one- and two-particle tracking, respectively. In one-particle interfacial microrheology, the rheological response at the interface is measured from the motion of individual particles. One-particle interfacial microrheology at polydimethylsiloxane (PDMS) oil-water interfaces depends strongly on the surface chemistry of different tracer particles. In contrast, by tracking the correlated motion of particle pairs, two-particle interfacial microrheology significantly minimizes the effects from tracer particle surface chemistry and particle size. Two-particle interfacial microrheology is further applied to study the linear viscoelastic properties of immiscible polymer-polymer interfaces. The interfacial loss and storage moduli at PDMS-polyethylene glycol (PEG) interfaces are measured over a wide frequency range. The zero-shear interfacial viscosity, estimated from the Cross model, falls between the bulk viscosities of two individual polymers. Surprisingly, the interfacial relaxation time is observed to be an order of magnitude larger than that of the PDMS bulk polymers. To explore the fundamental basis of interfacial nanorheology, molecular dynamics (MD) simulations are employed to investigate the nanoparticle dynamics. The diffusion of single nanoparticles in pure water and low-viscosity PDMS oils is reasonably consistent with the prediction by the Stokes-Einstein equation. To demonstrate the potential of nanorheology based on the motion of nanoparticles, the shear moduli and viscosities of the bulk phases and interfaces are calculated from single-nanoparticle tracking. Finally, the competitive influences of nanoparticles and surfactants on other interfacial properties, such as interfacial thickness and interfacial tension are also studied by MD simulations.
Details
Title
- Microrheology and particle dynamics at liquid-liquid interfaces
Contributors
- Song, Yanmei (Author)
- Dai, Lenore L (Thesis advisor)
- Jiang, Hanqing (Committee member)
- Lin, Jerry Y S (Committee member)
- Raupp, Gregory B (Committee member)
- Sierks, Michael R (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2011
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph. D., Arizona State University, 2011
- bibliographyIncludes bibliographical references (p. 164-186)
- Field of study: Chemical engineering
Citation and reuse
Statement of Responsibility
by Yanmei Song