Full metadata
Papago Park in Tempe, Arizona (USA) is host to several buttes composed of landslide breccias. The focus of this thesis is a butte called “Contact Hill,” which is composed of metarhyolitic debris flows, granitic debris flows, and Barnes Butte Breccia. The Barnes Butte Breccia can be broken down into several different compositional categories that can be dated based on their relative ages. The depositional timeline of these rocks is explored through their mineral and physical properties. The rhyolitic debris flow is massively bedded and dips at 26° to the southeast. The granitic debris flow is not bedded and exhibits a mixture of granite clasts of different grain sizes. In thin section analysis, five mineral types were identified: opaque inclusions, white quartz, anhedral and subhedral biotite, yellow stained K-feldspar, and gray plagioclase. It is hypothesized that regional stretching and compression of the crust, accompanied with magmatism, helped bring the metarhyolite and granite to the surface. Domino-like fault blocks caused large brecciation, and collapse of a nearby quartzite and granite mountain helped create the Barnes Butte Breccia: a combination of quartzite, metarhyolite, and granite clasts. Evidence of Papago Park’s ancient terrestrial history is seen in metarhyolite clasts containing sand grains. These geologic events, in addition to erosion, are responsible for Papago Park’s unique appearance today.
- Scheller, Jessica Rose (Author)
- Reynolds, Stephen (Thesis director)
- Johnson, Julia (Committee member)
- School of Earth and Space Exploration (Contributor, Contributor)
- Barrett, The Honors College (Contributor)
- 2021-04-17 12:45:08
- 2021-08-11 04:09:57
- 3 years 2 months ago