Full metadata
Title
Nutrient dynamics of photodegradation for Ambrosia deltoidea litter in an arid, urban ecosystem
Description
The nutrient dynamics of degradation have been studied almost exclusively in mesic (not arid or semi-arid) ecosystems. In arid ecosystems, we do know that photodegradation can cause significant mass loss and that lignin plays a dual role in the processes of degradation: it slows biodegradation due to its rigid chemical structure but can speed up photodegradation via the carbon mineralization process. This experiment attempts to assess the nutrient dynamics of nitrogen (N) and phosphorus (P) that occur while overall mass is being lost via photodegradation. We took Ambrosia deltoidea litter from 5 sites within the Phoenix city core and 5 sites downwind of the city of Phoenix. Half of this litter was N and P enriched from a previous experiment and half was control. We split the litter into UV opaque and UV transparent litter bags that had holes punched in them to allow microbial interaction. These bags were picked up at sampling periods of 10, 20, 30, and 40 weeks. All samples were then tested for mass loss, lignin content, carbon (C) content, N content, and P content. We found that downwind samples lost more mass than the core. There was little effect over time on N content and little disparity in P trends between the samples. P behaved as expected with an initial rise due to microbial interaction and then a decline as the microbes released P. Lignin concentration rose in a similar fashion at both core and downwind sites confirming that lignin remains in litter through the process of photodegradation. One interesting result was an logarithmic-like decrease in C:N ratio and C:P ratio for the downwind samples but a fairly constant ratio in the core samples. It is clear that these decreasing ratios result not from increased N or P, but instead from rapidly decreasing C. Overall, we conclude that neither N nor P is affected significantly by photodegradation at either site. N deposition appears to slow mass loss, but speed up N release, at least in the early stages of decomposition.
Date Created
2013-12
Contributors
- Christman, Maximilian Peter (Author)
- Ball, Becky A. (Thesis director)
- Hall, Sharon (Committee member)
- Barrett, The Honors College (Contributor)
- School of Sustainability (Contributor)
- School of Mathematical and Statistical Sciences (Contributor)
Topical Subject
Resource Type
Extent
28 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2013-2014
Handle
https://hdl.handle.net/2286/R.I.19916
Level of coding
minimal
Cataloging Standards
System Created
- 2017-10-30 02:50:57
System Modified
- 2021-08-11 04:09:57
- 3 years 3 months ago
Additional Formats