137014-Thumbnail Image.png
Description
The solution of the linear system of equations $Ax\approx b$ arising from the discretization of an ill-posed integral equation with a square integrable kernel is considered. The solution by means of Tikhonov regularization in which $x$ is found to as

The solution of the linear system of equations $Ax\approx b$ arising from the discretization of an ill-posed integral equation with a square integrable kernel is considered. The solution by means of Tikhonov regularization in which $x$ is found to as the minimizer of $J(x)=\{ \|Ax -b\|_2^2 + \lambda^2 \|L x\|_2^2\}$ introduces the unknown regularization parameter $\lambda$ which trades off the fidelity of the solution data fit and its smoothing norm, which is determined by the choice of $L$. The Generalized Discrepancy Principle (GDP) and Unbiased Predictive Risk Estimator (UPRE) are methods for finding $\lambda$ given prior conditions on the noise in the measurements $b$. Here we consider the case of $L=I$, and hence use the relationship between the singular value expansion and the singular value decomposition for square integrable kernels to prove that the GDP and UPRE estimates yield a convergent sequence for $\lambda$ with increasing problem size. Hence the estimate of $\lambda$ for a large problem may be found by down-sampling to a smaller problem, or to a set of smaller problems, and applying these estimators more efficiently on the smaller problems. In consequence the large scale problem can be solved in a single step immediately with the parameter found from the down sampled problem(s).


Download restricted.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Download count: 1

Details

Title
  • Validity of down-sampling data for regularization parameter estimation when solving large-scale ill-posed inverse problems
Contributors
Date Created
2014-05
Resource Type
  • Text
  • Machine-readable links