Description
Morphine is a commonly used analgesic in pain management. Opioid administration to a patient after surgery, such as spinal decompression surgery, can lead to adverse side effects. To demonstrate these adverse side effects could be decreased we created a model of how morphine and its metabolites are transported and excreted from the body. Using the of morphine and a standard compartment approach this thesis aimed at projecting pharmacokinetics trends of morphine overtime. A Matlab compartment model predicting the transport of morphine through the body can contribute to a better understanding of the concentrations at the systemic level, specifically with respect to a CSF, and what happens when you compare an intravenous injection to a local delivery. Other studies and models commonly utilized patient data over small periods of time2,3,5. An extended period of time will provide information into morphine’s time course after surgery. This model focuses on a compartmentalization of the major organs and the use of a simple Mechalis-Menten enzyme kinetics for the metabolites in the liver. Our results show a CSF concentration of about 1.086×〖10〗^(-12) nmol/L in 6 weeks and 1.0097×〖10〗^(-12) nmol/L in 12 weeks. The concentration profiles in this model are similar to what was expected. The implications of this suggest that patients who reported effects of morphine paste, a locally administered opioid, weeks after the surgery were due to other reasons. In creating a model we can determine important variables and dosage information. This information allows for a greater understanding of what is happening in the body and how to improve surgical outcomes. We propose this study has implications in general research in the pharmacokinetics and dynamics of pharmacology through the body.
Download count: 1
Details
Title
- Systemic Model of Morphine by Compartmentalization
Contributors
- Jacobs, Danielle Renee (Author)
- Caplan, Michael (Thesis director)
- Giers, Morgan (Committee member)
- Barrett, The Honors College (Contributor)
- Harrington Bioengineering Program (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2014-05
Subjects
Resource Type
Collections this item is in