Description
The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics to accomplish. An EMG sensor was used to obtain processed electrical signals produced from the muscles in the forearm and was then utilized to control the actuation speed of the tentacles. An Arduino microprocessor was used to translate the EMG signals to infrared blinking sequences which would propagate commands through a constructed circuit shield to the infrared receiver on jellyfish. The receiver will then translate the received IR sequence into actions. Then the flying device must produce enough thrust to propel the body upwards. The application of biomimetics would best test my skills as an engineer as well as provide a method of applying what I have learned over the duration of my undergraduate career.
Details
Title
- Electromyograph Remote Control Jellyfish Toy: A Brief Exploration of Jellyfish Biomimetics
Contributors
- Tsui, Jessica W (Author)
- Muthuswamy, Jitteran (Thesis director)
- Blain Christen, Jennifer (Committee member)
- Barrett, The Honors College (Contributor)
- Harrington Bioengineering Program (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2014-05
Subjects
Resource Type
Collections this item is in