136655-Thumbnail Image.png
Description

The U.S. Navy and other amphibious military organizations utilize a derivation of the traditional side stroke called the Combat Side Stroke, or CSS, and tout it as the most efficient technique available. Citing its low aerobic requirements and slow yet

The U.S. Navy and other amphibious military organizations utilize a derivation of the traditional side stroke called the Combat Side Stroke, or CSS, and tout it as the most efficient technique available. Citing its low aerobic requirements and slow yet powerful movements as superior to the traditionally-best front crawl (freestyle), the CSS is the go-to stroke for any operation in the water. The purpose of this thesis is to apply principles of Industrial Engineering to a real-world situation not typically approached from a perspective of optimization. I will analyze pre-existing data about various swim strokes in order to compare them in terms of efficiency for different variables. These variables include calories burned, speed, and strokes per unit distance, as well as their interactions. Calories will be measured by heart rate monitors, converting BPM to calories burned. Speed will be measured by stopwatch and observer. Strokes per unit distance will be measured by observer. The strokes to be analyzed include the breast stroke, crawl stroke, butterfly, and combat side stroke. The goal is to informally test the U.S. Navy's claim that the combat side stroke is the optimum stroke to conserve energy while covering distance. Because of limitations in the scope of the project, analysis will be done using data collected from literary sources rather than through experimentation. This thesis will include a design of experiment to test the findings here in practical study. The main method of analysis will be linear programming, followed by hypothesis testing, culminating in a design of experiment for future progress on this topic.



Download restricted.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Applying Industrial Engineering to Optimize Swim Stroke Economy
Contributors
Date Created
2014-12
Resource Type
  • Text
  • Machine-readable links