136557-Thumbnail Image.png
Description
Lithium-ion batteries are the predominant source of electrical energy storage for most portable electronics applications, including hybrid/electric vehicles, laptops, and cellular phones. However, these batteries pose safety concerns due to their flammability and tendency to violently ignite upon short circuiting

Lithium-ion batteries are the predominant source of electrical energy storage for most portable electronics applications, including hybrid/electric vehicles, laptops, and cellular phones. However, these batteries pose safety concerns due to their flammability and tendency to violently ignite upon short circuiting or failing. Solid electrolytes are a current research development aimed at reducing the flammability and reactivity of lithium batteries. The compound Li7La3Zr2O12, or LLZO, exhibits satisfactory ionic conductivity in the cubic phase, which is normally synthesized via doping with Al. It has recently been discovered that synthesizing nanostructured LLZO can stabilize the cubic phase without the need for doping. Here nanostructured LLZO was formed using templating on various cellulosic fibers, including cotton fibers, printer paper, filter paper, and nanocellulose fibrils followed by calcination at 700-800 °C. The effect of templating material, calcination temperature, calcination time, and heating ramp rate on LLZO phase and morphology was thoroughly investigated. Templating was determined to be an effective method for controlling the LLZO size and morphology, and most templating experiments resulted in LLZO fibers or ligaments similar in size and morphology to the original template material. A systematic study on the various experimental parameters was performed, concluding that low calcination time and low ramp rate favored smaller ligament formation. Further, it was verified that cubic phase stabilization occurred for LLZO with ligaments of less than 1 micron on average without the use of doping. This research provides more information regarding the size dependence on cubic LLZO stabilization that has not been previously investigated in detail.


Download restricted.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Effect of Cellulose Templating on Nanostructured Lithium Lanthanum Zirconium Oxide (LLZO)
Contributors
Date Created
2015-05
Resource Type
  • Text
  • Machine-readable links