Full metadata
Title
The Role of Precision Grip Aperture in Hardness Differentiation of Cube-Like Objects
Description
Determining the characteristics of an object during a grasping task requires a combination of mechanoreceptors in the muscles and fingertips. The width of a person's finger aperture during the grasp may affect the accuracy of how that person determines hardness, as well. These experiments aim to investigate how an individual perceives hardness amongst a gradient of varying hardness levels. The trend in the responses is assumed to follow a general psychometric function. This will provide information about subjects' abilities to differentiate between two largely different objects, and their tendencies towards guess-chances upon the presentation of two similar objects. After obtaining this data, it is then important to additionally test varying finger apertures in an object-grasping task. This will allow an insight into the effect of aperture on the obtained psychometric function, thus ultimately providing information about tactile and haptic feedback for further application in neuroprosthetic devices. Three separate experiments were performed in order to test the effect of finger aperture on object hardness differentiation. The first experiment tested a one-finger pressing motion among a hardness gradient of ballistic gelatin cubes. Subjects were asked to compare the hardness of one cube to another, which produced the S-curve that accurately portrayed the psychometric function. The second experiment utilized the Phantom haptic device in a similar setup, using the precision grip grasping motion, instead. This showed a more linear curve; the percentage reported harder increased as the hardness of the second presented cube increased, which was attributed to both the experimental setup limitations and the scale of the general hardness gradient. The third experiment then progressed to test the effect of three finger apertures in the same experimental setup. By providing three separate testing scenarios in the precision grip task, the experiment demonstrated that the level of finger aperture has no significant effect on an individual's ability to perceive hardness.
Date Created
2015-05
Contributors
- Maestas, Gabrielle Elise (Author)
- Helms Tillery, Stephen (Thesis director)
- Tanner, Justin (Committee member)
- Barrett, The Honors College (Contributor)
- Harrington Bioengineering Program (Contributor)
Topical Subject
Resource Type
Extent
16 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2014-2015
Handle
https://hdl.handle.net/2286/R.I.28955
Level of coding
minimal
Cataloging Standards
System Created
- 2017-10-30 02:50:57
System Modified
- 2021-08-11 04:09:57
- 3 years 3 months ago
Additional Formats