Full metadata
Title
An Effective Characterization Methodology for Sub-micron Copper Oxides and Oxide-preventing Surface Finishes with a Short Essay on the Role of SEM in the Continuing Miniaturization of Integrated Circuits
Description
The transition to lead-free solder in the electronics industry has benefited the environment in many ways. However, with new materials systems comes new materials issues. During the processing of copper pads, a protective surface treatment is needed to prevent the copper from oxidizing. Characterizing the copper oxidation underneath the surface treatment is challenging but necessary for product reliability and failure analysis. Currently, FIB-SEM, which is time-consuming and expensive, is what is used to understand and analyze the surface treatment-copper oxide(s)-copper system. This project's goals were to determine a characterization methodology that cuts both characterization time and cost in half for characterizing copper oxidation beneath a surface treatment and to determine which protective surface treatment is the best as defined by multiple criterion such as cost, sustainability, and reliability. Two protective surface treatments, organic solderability preservative (OSP) and chromium zincate, were investigated, and multiple characterization techniques were researched. Six techniques were tested, and three were deemed promising. Through our studies, it was determined that the best surface treatment was organic solderability preservative (OSP) and the ideal characterization methodology would be using FIB-SEM to calibrate a QCM model, along with using SERA to confirm the QCM model results. The methodology we propose would result in a 91% reduction in characterization cost and a 92% reduction in characterization time. Future work includes further calibration of the QCM model using more FIB/SEM data points and eventually creating a model for oxide layer thickness as a function of exposure time and processing temperature using QCM as the primary data source. An additional short essay on the role of SEM on the continuing miniaturization of integrated circuits is included at the end. This paper explores the intertwined histories of the scanning electron microscope and the integrated circuit, highlighting how advances in SEM influence integrated circuit advances.
Date Created
2015-05
Contributors
- Smith, Bethany Blair (Co-author)
- Marion, Branch Kelly (Co-author)
- Cruz, Hernandez (Co-author)
- Kimberly, McGuiness (Co-author)
- Adams, James (Thesis director)
- Krause, Stephen (Committee member)
- Barrett, The Honors College (Contributor)
- Materials Science and Engineering Program (Contributor)
Topical Subject
Resource Type
Extent
40 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2014-2015
Handle
https://hdl.handle.net/2286/R.I.29279
Level of coding
minimal
Cataloging Standards
System Created
- 2017-10-30 02:50:57
System Modified
- 2021-08-11 04:09:57
- 3 years 3 months ago
Additional Formats