Full metadata
Title
Implementation of a Prototype Aerogel RICH detector for Testing the Performance of Aerogels
Description
Our group has constructed a ring-imaging Cherenkov (RICH) detector with the goal of testing the performance of aerogel tiles in charged particle detectors. In previous work, tiles produced by Aspen Aerogels were tested as radiators in Cherenkov threshold counters and compared to commercial-grade samples. As an extension of this work we built a counter of the RICH type, which is used in practice to extract more particle identification information than threshold counters, and we have studied the images resulting from various aerogel samples.
The detector was designed for use in table-top experiments in which our particle source would be cosmic rays. Due to the vast energy range of cosmic rays, the window in which we can discriminate velocities is relatively small. Since the particles we do detect generally have β≈1, the relativistic limit β→1 motivates imaging by the Focusing Aerogel RICH (FARICH) technique, in which photons from multiple tiles are focused together at a detection plane.
Our detection plane is an array of flat-panel, multi-anode photomultiplier tubes (PMTs). Readout consists of multiplexing the anode outputs, recording the digitized signal, and converting this into a matrix of integrated charge values. The charge distribution in that matrix should directly imply the particle's speed; however, in practice, final recorded images are the influenced by many intermediate processes, so we have attempted to make meaningful measurements by averaging over numerous events.
For a given configuration and data collection, we produce the spatial distribution of observed signals relative to the cosmic ray's point of impact. These distributions have the expected form of a ring and their characteristics compare favorably with the predictions of geometric optics. Our confidence in the images is increased by verifying that changes to the configuration are reflected by the changes in the rings. We find that FARICH improves the sharpness of our ring images, but tiles must be used individually for actual aerogel analysis. So far we have shown that the Aspen tiles behave as one would expect for the purposes of RICH. Their images do resemble those produced by commercial-grade tiles, but we do not have tiles sufficiently similar for side-by-side comparison. A method of quantifying tile performance has proven difficult and is the only remaining task for our group.
The detector was designed for use in table-top experiments in which our particle source would be cosmic rays. Due to the vast energy range of cosmic rays, the window in which we can discriminate velocities is relatively small. Since the particles we do detect generally have β≈1, the relativistic limit β→1 motivates imaging by the Focusing Aerogel RICH (FARICH) technique, in which photons from multiple tiles are focused together at a detection plane.
Our detection plane is an array of flat-panel, multi-anode photomultiplier tubes (PMTs). Readout consists of multiplexing the anode outputs, recording the digitized signal, and converting this into a matrix of integrated charge values. The charge distribution in that matrix should directly imply the particle's speed; however, in practice, final recorded images are the influenced by many intermediate processes, so we have attempted to make meaningful measurements by averaging over numerous events.
For a given configuration and data collection, we produce the spatial distribution of observed signals relative to the cosmic ray's point of impact. These distributions have the expected form of a ring and their characteristics compare favorably with the predictions of geometric optics. Our confidence in the images is increased by verifying that changes to the configuration are reflected by the changes in the rings. We find that FARICH improves the sharpness of our ring images, but tiles must be used individually for actual aerogel analysis. So far we have shown that the Aspen tiles behave as one would expect for the purposes of RICH. Their images do resemble those produced by commercial-grade tiles, but we do not have tiles sufficiently similar for side-by-side comparison. A method of quantifying tile performance has proven difficult and is the only remaining task for our group.
Date Created
2014-05
Contributors
- Stryker, Jesse R. (Author)
- Alarcon, Ricardo (Thesis director)
- Schmidt, kevin E. (Committee member)
- Barrett, The Honors College (Contributor)
Topical Subject
Resource Type
Extent
63 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2013-2014
Handle
https://hdl.handle.net/2286/R.I.35266
Level of coding
minimal
Cataloging Standards
System Created
- 2017-10-30 02:50:57
System Modified
- 2021-07-16 10:38:41
- 3 years 3 months ago
Additional Formats