Description
The Department of Defense (DoD) acquisition system is a complex system riddled with cost and schedule overruns. These cost and schedule overruns are very serious issues as the acquisition system is responsible for aiding U.S. warfighters. Hence, if the acquisition process is failing that could be a potential threat to our nation's security. Furthermore, the DoD acquisition system is responsible for proper allocation of billions of taxpayer's dollars and employs many civilians and military personnel. Much research has been done in the past on the acquisition system with little impact or success. One reason for this lack of success in improving the system is the lack of accurate models to test theories. This research is a continuation of the effort on the Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation modeling research on DoD acquisition system. We propose to extend ERAM using agent-based simulation principles due to the many interactions among the subsystems of the acquisition system. We initially identify ten sub models needed to simulate the acquisition system. This research focuses on three sub models related to the budget of acquisition programs. In this thesis, we present the data collection, data analysis, initial implementation, and initial validation needed to facilitate these sub models and lay the groundwork for a full agent-based simulation of the DoD acquisition system.
Details
Title
- Cost Driven Agent Based Simulation of the Department of Defense Acquisition System
Contributors
- Bucknell, Sophia Robin (Author)
- Wu, Teresa (Thesis director)
- Li, Jing (Committee member)
- Colombi, John (Committee member)
- Industrial, Systems (Contributor)
- Barrett, The Honors College (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2016-05
Resource Type
Collections this item is in