Full metadata
Title
Estimation Theory on Random Graphs for Offset Detection in Sensor Networks
Description
A distributed sensor network (DSN) is a set of spatially scattered intelligent sensors designed to obtain data across an environment. DSNs are becoming a standard architecture for collecting data over a large area. We need registration of nodal data across the network in order to properly exploit having multiple sensors. One major problem worth investigating is ensuring the integrity of the data received, such as time synchronization. Consider a group of match filter sensors. Each sensor is collecting the same data, and comparing the data collected to a known signal. In an ideal world, each sensor would be able to collect the data without offsets or noise in the system. Two models can be followed from this. First, each sensor could make a decision on its own, and then the decisions could be collected at a ``fusion center'' which could then decide if the signal is present or not. The fusion center can then decide if the signal is present or not based on the number true-or-false decisions that each sensor has made. Alternatively, each sensor could relay the data that it collects to the fusion center, and it could then make a decision based on all of the data that it then receives. Since the fusion center would have more information to base its decision on in the latter case--as opposed to the former case where it only receives a true or false from each sensor--one would expect the latter model to perform better. In fact, this would be the gold standard for detection across a DSN. However, there is random noise in the world that causes corruption of data collection, especially among sensors in a DSN. Each sensor does not collect the data in the exact same way or with the same precision. We classify these imperfections in data collections as offsets, specifically the offset present in the data collected by one sensor with respect to the rest of the sensors in the network. Therefore, reconsider the two models for a DSN described above. We can naively implement either of these models for data collection. Alternatively, we can attempt to estimate the offsets between the sensors and compensate. One could see how it would be expected that estimating the offsets within the DSN would provide better overall results than not finding estimators. This thesis will be structured as follows. First, there will be an extensive investigation into detection theory and the impact that different types of offsets have on sensor networks. Following the theory, an algorithm for estimating the data offsets will be proposed correct for the offsets. Next, we will look at Monte Carlo simulation results to see the impact on sensor performance of data offsets in comparison to a sensor network without offsets present. The algorithm is then implemented, and further experiments will demonstrate sensor performance with offset detection.
Date Created
2016-05
Contributors
- Monardo, Vincent James (Author)
- Cochran, Douglas (Thesis director)
- Kierstead, Hal (Committee member)
- Electrical Engineering Program (Contributor)
- School of Mathematical and Statistical Sciences (Contributor)
- Barrett, The Honors College (Contributor)
Topical Subject
Resource Type
Extent
22 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2015-2016
Handle
https://hdl.handle.net/2286/R.I.37284
Level of coding
minimal
Cataloging Standards
System Created
- 2017-10-30 02:50:57
System Modified
- 2021-08-11 04:09:57
- 3 years 4 months ago
Additional Formats