Full metadata
Title
A Novel Computing Platform for Accelerated Magnetic Resonance Spectroscopic Cancer Imaging
Description
Compressed sensing magnetic resonance spectroscopic imaging (MRSI) is a noninvasive and in vivo potential diagnostic technique for cancer imaging. This technique undersamples the distribution of specific cancer biomarkers within an MR image as well as changes in the temporal dimension and subsequently reconstructs the missing data. This technique has been shown to retain a high level of fidelity even with an acceleration factor of 5. Currently there exist several different scanner types that each have their separate analytical methods in MATLAB. A graphical user interface (GUI) was created to facilitate a single computing platform for these different scanner types in order to improve the ease and efficiency with which researchers and clinicians interact with this technique. A GUI was successfully created for both prospective and retrospective MRSI data analysis. This GUI retained the original high fidelity of the reconstruction technique and gave the user the ability to load data, load reference images, display intensity maps, display spectra mosaics, generate a mask, display the mask, display kspace and save the corresponding spectra, reconstruction, and mask files. Parallelization of the reconstruction algorithm was explored but implementation was ultimately unsuccessful. Future work could consist of integrating this parallelization method, adding intensity overlay functionality and improving aesthetics.
Date Created
2016-05
Contributors
- Lammers, Luke Michael (Author)
- Kodibagkar, Vikram (Thesis director)
- Hu, Harry (Committee member)
- Harrington Bioengineering Program (Contributor)
- Barrett, The Honors College (Contributor)
Topical Subject
Resource Type
Extent
27 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Series
Academic Year 2015-2016
Handle
https://hdl.handle.net/2286/R.I.37581
Level of coding
minimal
Cataloging Standards
System Created
- 2017-10-30 02:50:58
System Modified
- 2021-08-11 04:09:57
- 3 years 3 months ago
Additional Formats